
MATLAB Builder for Excel
The Language of Technical Computing

Computation

Visualization

Programming

User’s Guide
Version 1

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Builder for Excel® User’s Guide
© COPYRIGHT 1984–2006 The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
December 2001 Online only New for Version 1.0
July 2002 First printing Version 1.1 (Release 13)
June 2004 Online only Version 1.2 (Release 14) Name changed from MATLAB

Excel Builder
August 2004 Online only Version 1.2.1 (Release 14+)
October 2004 Online only Version 1.2.2 (Release 14SP1)
September 2005 Online only Version 1.2.5 (Release 14SP3)
March 2006 Online only Version 1.2.6 (Release 2006a)

Contents

Getting Started

1
What Is MATLAB® Builder for Excel®? 1-2

How Does Excel Builder Work? . 1-2

Building a Deployable Application 1-3
Creating a Project . 1-3
Elements of an Excel Builder Project 1-6
Managing M-Files and MEX-Files . 1-7
Building a Project . 1-8
Testing the Model . 1-10
Application Deployment . 1-11
Packaging and Distributing the Component 1-11

Graphical User Interface

2
Menus . 2-2

File Menu . 2-2
Project Menu . 2-3
Build Menu . 2-4
Component Menu . 2-4
Help Menu . 2-6

Project Settings Dialog Box . 2-7

Component Information Window . 2-8

Package Files Dialog Box . 2-9

v

Programming with MATLAB Builder for Excel

3
Overview of Integration Process . 3-2

When to Use a Formula Function or a Subroutine 3-3

Initializing MATLAB Builder for Excel Libraries with
Excel . 3-4

Creating an Instance of a Class . 3-6
CreateObject Function . 3-6
New Operator . 3-6

Calling the Methods of a Class Instance 3-9

Processing varargin and varargout Arguments 3-11

Handling Errors During a Method Call 3-13

Modifying Flags . 3-14
Array Formatting Flags . 3-14
Data Conversion Flags . 3-16

Usage Examples

4
Magic Square Examples . 4-2

Creating the Project . 4-2
Building the Project . 4-4
Adding the Excel Builder COM Function to Excel 4-4
Illustration 1. Output Magic Square Results to Excel 4-4
Illustration 2. Transpose the Output 4-5
Illustration 3. Resize the Output . 4-5
Inspecting the Visual Basic Code . 4-5

vi Contents

Multiple Files and Variable Arguments Example 4-7
Creating the Project . 4-7
Building the Project . 4-9
Adding the Excel Builder COM Function to Excel 4-9
Illustration 4: Calling myplot . 4-10
Illustration 5: Calling mysum Four Different Ways 4-11
Illustration 6: myprimes Macro . 4-12
Inspecting the Visual Basic Code . 4-14

Spectral Analysis Example . 4-15
Building the Component . 4-15
Integrating the Component Using VBA 4-17
Testing the Add-In . 4-28
Packaging and Distributing the Add-In 4-31

Function Wizard

5
Overview of the Function Wizard 5-2

Installing the Function Wizard Add-In 5-3

Starting the Function Wizard . 5-4

Understanding the Function Viewer 5-5
Using the Function Viewer . 5-5
Loading and Executing Functions . 5-5

Component Browser . 5-7

Function Properties . 5-8
Editing Function Arguments . 5-8

Argument Properties . 5-12
Input Argument Properties Dialog Box 5-12
Output Argument Properties Dialog Box 5-13

vii

Function Utilities . 5-14
Rename Function Dialog Box . 5-14
Copy Function Dialog Box . 5-14
Move Function Dialog Box . 5-15

Functions — Alphabetical List

6

Producing a COM Object from MATLAB

A
Overview of Internal Processes . A-2

Code Generation . A-3
Create Interface Definitions . A-3
C++ Compilation . A-4
Linking and Resource Binding . A-4
Component Registration . A-4

Component Registration . A-5
Obtaining Registry Information . A-5
Self-Registering Components . A-7
Globally Unique Identifier (GUID) A-8
Versioning . A-9

Calling Conventions . A-11
Producing a COM Class . A-12
IDL Mapping . A-12
Visual Basic Mapping . A-13
MATLAB Compiler Output . A-14

viii Contents

Data Conversion

B
Data Conversion Rules . B-2

Array Formatting Flags . B-12

Data Conversion Flags . B-14
CoerceNumericToType . B-14
InputDateFormat . B-15
OutputAsDate As Boolean . B-16
DateBias As Long . B-16

Utility Library

C
Referencing Utility Classes . C-2

Utility Library Classes . C-3
Class MWUtil . C-3
Class MWFlags . C-10
Class MWStruct . C-16
Class MWField . C-24
Class MWComplex . C-25
Class MWSparse . C-27
Class MWArg . C-30

Enumerations . C-32
Enum mwArrayFormat . C-32
Enum mwDataType . C-32
Enum mwDateFormat . C-33

ix

Troubleshooting

D

Examples

E
Calling a MATLAB Function from Excel E-2

Using Multiple Files and Variable Arguments E-2

Creating a Comprehensive Excel Add-In: Spectral
Analysis . E-2

Querying the Registry . E-2

Index

x Contents

1

Getting Started

What Is MATLAB® Builder for
Excel®? (p. 1-2)

Brief description of the product

Building a Deployable Application
(p. 1-3)

Describes the sequence of steps
needed to create and deploy an
application.

1 Getting Started

What Is MATLAB® Builder for Excel®?
MATLAB Builder for Excel (also called Excel Builder) is an extension to the
MATLAB Compiler. Use Excel Builder to package MATLAB functions so that
Microsoft® Excel® users can access them from Excel.

When you package and distribute the application you must include supporting
files generated by Excel Builder as well as the MATLAB Compiler Runtime
(MCR).

How Does Excel Builder Work?
Excel Builder converts MATLAB functions to class methods that encapsulate
the MATLAB code and that belong to COM components. Each .COM
component contains one or more classes, and each class provides an interface
to the M-functions that you add to the class at build time. The COM
component is a COM add-in that provides a set of methods that wrap the
M-code along with a DLL file.

COM add-ins are stand-alone software components that are integrated into
an application to add features to the program. They use a common integration
architecture that provides a consistent model across multiple applications.
All Microsoft Office XP applications support COM add-ins.

1-2

Building a Deployable Application

Building a Deployable Application
Using MATLAB Builder for Excel to create a deployable application requires
the following steps.

• “Creating a Project” on page 1-3

• “Managing M-Files and MEX-Files” on page 1-7

• “Building a Project” on page 1-8

• “Testing the Model” on page 1-10

• “Application Deployment” on page 1-11

• “Packaging and Distributing the Component” on page 1-11

This section references various menus provided by the Excel Builder graphical
user interface (GUI). For a full discussion of these menus, see Chapter 2,
“Graphical User Interface”

Creating a Project
To use MATLAB Builder for Excel, you need to create a project. To do so:

1 If you have not already done so, execute the following command in
MATLAB:

mbuild -setup

Be sure to choose a supported compiler. See Supported Compilers.

2 Enter the following MATLAB command at the command line.

mxltool

The MATLAB Builder window appears.

1-3

http://www.mathworks.com/support/tech-notes/1600/1601.shtml

1 Getting Started

For a complete description of the features available from this window, see
“Menus” on page 2-2.

Select File > New > Project to open the Project Settings dialog box.

1-4

Building a Deployable Application

Component name denotes the name of the DLL created later in the build
process. After you enter the component name, the GUI automatically enters
a Class name identical to the component name. You can change the class
name to something more descriptive. Although the component name and
class name can match, the component name cannot match the name of any
M- or MEX-files added to the project later. For Excel Builder, the Create a
singleton MCR option is always on, whether or not the check box is selected.

The Project version default value is 1.0. See “Versions” on page 1-7 for
additional information.

Project directory specifies where any project and build files are written
when compiling and packaging your models. The project directory is
automatically generated from the name of your current directory and the
component name.

1-5

1 Getting Started

Note You can accept the automatically generated project directory path or
choose another. Once you click OK on this menu, this path is saved. If you
later decide to move the project or change anything on its path, you need
to redo the entire project specification process, including adding files to the
project (see “Project Settings Dialog Box” on page 2-7) and respecifying the
project directory path.

You can create a debug version of your compiled models and can specify
verbose output. The debug option lets you backtrace to the point where you
can identify if the failure occurred in the initialization of MCR, the function
call, or the termination routine.

Once you accept these settings on the New Project Settings dialog box by
clicking OK, they become part of your project workspace and are saved to the
project file along with the names of any M- or MEX- files you subsequently add
to the project. A project file named <component_name>.mxl is automatically
saved to the project directory.

Elements of an Excel Builder Project
A project consists of all the elements necessary to build a deployable
application using Excel Builder. Excel Builder components are COM objects
accessible from Microsoft Excel through Visual Basic for Applications (VBA).
COM is an acronym for Component Object Model, which is the Microsoft
binary standard for object interoperability. Each COM object exposes a class
to the Visual Basic programming environment. The class contains a set of
functions called methods, corresponding to the original MATLAB functions
included in the component’s project.

Note Currently, Excel Builder components support one class per component.

Classes
When creating a component, you must additionally provide a class name.
The component name represents the name of the Dynamic Load Library
(DLL) file to be created. The class name denotes the name of the class that

1-6

Building a Deployable Application

performs a call on a specific method at run-time. The relationship between
component name and class name, and which methods (MATLAB functions)
go into a particular class, are purely organizational. As a general rule,
when compiling many MATLAB functions, it helps to determine a scheme
of function categories and to create a separate class for each category. The
name of each class should describe what the class does. Organizing related
functions into classes in this way has the added advantage of reducing the
amount of code to rebuild and redeploy when one function is changed.

Versions
Excel Builder components also support a simple versioning mechanism.
A version number is attached to a given component. This number gets
automatically built into the DLL file name and the system registry
information. As a general rule, the first version of a component is 1.0 (the
default value if none is chosen). Changes made to the component before
deployment keep the same version number. After deployment, change the
version number for all subsequent changes, so that you can easily manage
the new and old versions. The system sees classes in different versions of the
same component as distinct, even if they have the same name.

Managing M-Files and MEX-Files
After you create a project, MATLAB Builder activates the following items in
the menu bar: “Project Menu” on page 2-3, “Build Menu” on page 2-4, and
“Component Menu” on page 2-4.

1-7

1 Getting Started

Add M- and/or MEX-files to the project by clicking Add File or Project > Add
File. You can add only a single file at a time to the project.

Note The name of any file added to the project cannot duplicate the name of
any function existing in the library of precompiled functions.

Clicking Remove or Project > Remove File removes any selected M- or
MEX-files. You can select multiple files for removal at one time.

Click Edit, Project > Edit File, or double-click an M-file name to open the
selected M-file(s) in the MATLAB editor for modification or debugging. You
cannot edit MEX files.

Building a Project
After you define your project settings and add the desired M- and MEX-
functions, you can build a deployable DLL and the necessary VBA code that
allows Excel to access the DLL.

1-8

Building a Deployable Application

Click Build > EXCEL/COM Objectto start the build process. Excel Builder
writes intermediate source files to <project_dir>\src and output files
necessary for deployment to <project_dir>\distrib.

Command Line Interface
Instead using the MATLAB Builder, you can use the MATLAB Compiler
to build Excel COM components. To do so, use the mcc command on the
MATLAB command line. See the MATLAB Compiler documentation for a
description of the mcc command and its options.

Note If you use mcc, the <project_dir>\src and <project_dir>\distrib
directories are not automatically created. To create these directories and copy
associated files to them, use the mcc command’s -d switch.

On the command line use the excel wrapper option to create Excel COM
components with mcc, as follows:

mcc -W 'excel:<component_name>[,<class_name>[,<major>.<minor>]]'

An unspecified <class_name> defaults to <component_name>, and an
unspecified version number defaults to the latest version built or 1.0, if there
is no previous version.

The following example shows the mcc command used to create a COM
component called mycomponent containing single COM class named myclass
with methods foo and bar, and a version of 1.0:

mcc -W 'excel:mycomponent,myclass,1.0' -T link:lib foo.m bar.m

Use the -b switch to generate an Excel-compatible formula function for each
M-file on the command line:

mcc -W 'excel:mycomponent,myclass,1.0' -b -T link:lib foo.m bar.m

You can also use the cexcel bundle file to simplify the command line input, as
follows:

mcc -B 'cexcel:mycomponent,myclass,1.0' foo.m bar.m

1-9

1 Getting Started

The cexel bundle option automatically includes the -b switch.

Build Status
The Build Status pane shows the output of the build process and
informs you of any problems encountered. The files appearing in the
<project_dir>\distrib directory will be a DLL and a VBA file (.bas). The
resulting DLL is automatically registered on your system.

To clear the Build Status pane, click Build > Clear Status. The output of
the build process is saved in the file <project_dir>\build.log. To open the
Build Log, click Build > Open Build Log. The Build Log provides a record of
the build process that you can refer to after you have cleared the Build status
pane. If you have reason to contact MathWorks Technical Support with a
question about the build process, you will be asked to provide a copy of this log.

Testing the Model
At this point, you can test the model by importing the VBA file (.bas) into the
Excel Visual Basic editor and invoking one of the functions from the Excel
worksheet. To import the VBA code into Excel’s Visual Basic editor, open
Excel and click Tools > Macros > Visual Basic Editor. From the Visual
Basic editor, click File > Import and select the created VBA file from the
<project_dir>\distrib directory.

The Visual Basic module created when you build the project contains the
necessary initialization code and a VBA formula function for each MATLAB
function processed. Each supplied formula function wraps a call to the
respective compiled function in a format that can be accessed from a cell
in an Excel worksheet. The function takes a list of inputs corresponding to
the inputs of the original MATLAB function and returns a single output
corresponding to the first output argument.

Formula functions of this type are most useful to access a function of
one or more inputs that returns a single scalar value. When you require
multiple outputs or outputs representing ranges of data, you need a more
general Visual Basic subroutine. For details about integrating Excel Builder
components into Microsoft Excel via Visual Basic for Applications, see
Chapter 3, “Programming with MATLAB Builder for Excel”.

1-10

Building a Deployable Application

Application Deployment
The next step is to create an Excel add-in (.xla) from your VBA code. Return
to the Excel worksheet window and save the file as an .xla file to the
<project_dir>\distrib directory.

Here are the steps necessary to create an Excel add-in from the generated
VBA code. If these steps do not work, refer to your Excel documentation on
creating a .xla file.

1 Start Excel.

2 Click Tools > Macros > Visual Basic Editor.

3 In the Microsoft Visual Basic window, click File > Import.

4 Select VBA file (.bas) from the <projectdir>distrib directory.

5 Close the Visual Basic editor.

6 In the Excel worksheet window, click File > Save As.

7 Set Save as to Microsoft Excel add-in (*.xla).

8 Save the .xla file to <projectdir>\distrib.

You can also deploy files in *.xls and *.bas formats. To deploy in *.xls
format, follow the steps above but change the Save as type in step 7 to *.xls.
To deploy as VBA code, follow steps 1 to4 only.

Packaging and Distributing the Component
After you have successfully compiled your models and created the Excel
add-in, you are ready to package the component for distribution to your end
users.

Click Component > Package Component to create a self-extracting
executable containing these files.

1-11

1 Getting Started

File Description

<componentname>.ctf Component Technology File
archive; platform-dependent
file that must correspond to
the end user’s platform

<componentname_projectversion>.dll Compiled component

_install.bat Script run by the
self-extracting executable

MCRInstaller.exe Self-extracting MATLAB
Component Runtime library
utility; platform-dependent
file that must correspond to
the end user’s platform

*.xla Any Excel add-in files found in
the <projectdir>\distrib
directory

MCRInstaller.exe installs MCR, which you need to install on the target
machine once per release. You can find the steps needed to deploy an
application on a target machine in the MATLAB Compiler documentation.

To use the Excel add-ins, start Excel, click Tools > Add-Ins, and select the
desired .xla file.

You must repeat this distribution process on each target machine.

1-12

2

Graphical User Interface

Menus (p. 2-2) Describes the available set of menus.

Project Settings Dialog Box (p. 2-7) Discusses how to use the Project
Settings dialog boxes to create
settings for a new project or to edit
settings of an existing project.

Component Information Window
(p. 2-8)

Shows details about components
created with MATLAB Builder for
Excel.

Package Files Dialog Box (p. 2-9) Helps you specify and create a
self-extracting executable for your
component.

2 Graphical User Interface

Menus
The MATLAB command mxltool opens the MATLAB Builder window.

The following topics describe the use of the various menus that the MATLAB
Builder window provides:

• “File Menu” on page 2-2

• “Project Menu” on page 2-3

• “Build Menu” on page 2-4

• “Component Menu” on page 2-4

• “Help Menu” on page 2-6

File Menu
The File menu creates and manages MATLAB Builder for Excel projects.

2-2

Menus

• New Project opens the New Project Settings dialog box. This menu item
creates a project workspace where you can add M- and MEX-files to the
project and store project settings.

• Open Project allows you to load a previously saved project.

• Save Project saves the current project. If you have not yet saved the
current project, you are prompted for a filename.

• Save As Project saves the current project after prompting for a filename.

• Close Project closes the current project.

• Close CMPTOOL closes the MATLAB Builder window.

Project Menu
The Project menu manages the current project’s files.

• Add File adds an M-file or MEX-file to the current project. (Clicking Add
File in the Project Files pane of the main window performs the same task).

• Edit File lets you edit the selected M-file. (Clicking Edit in the Project
Files pane of the main window performs the same task.)

• Remove File removes the currently selected files from the project.
(Clicking Remove in the Project Files pane of the main window performs
the same task.)

• Settings opens the Project Settings dialog box showing the current project’s
information. See “Project Settings Dialog Box” on page 2-7 for details.

2-3

2 Graphical User Interface

Build Menu
The Build menu controls the building of the project’s files into an
Excel-accessible COM object.

• Excel/COM Object builds project files into an Excel-accessible COM
object and generates Visual Basic Application code necessary to create
an Excel add-in. The Excel add-in adds the new function(s) to the Excel
function name space.

• Clear Status clears the Build Status pane.

• Open Build Log displays project status that has been saved in this log file.

Component Menu
The Component menu completes the process of building a deployable
application.

• Package Component readies files for deployment. The deployable files
are packaged in a self-extracting executable. Click Package Component
to open the Package Files dialog box. See “Package Component” on page
2-4 for details.

• Component Info opens a dialog box with information about the current
project’s component and component versions. See “Component Information”
on page 2-5 for details.

Package Component
Package Component opens the Package Files dialog box.

2-4

Menus

The Add File and Remove File buttons let you add or delete user files to
or from the package.

The check box lets you include or exclude MATLAB Component Runtime
(MCR) from the package. MCR is a stand-alone set of shared libraries that
enables the execution of M-files. MCR provides complete support for all
MATLAB language features.

Click MCR Location to specify the directory location of MCRInstaller.zip.

After you have specified the files to include in the package, click Create to
initiate package creation.

Component Information
Component Info opens the Component dialog box.

2-5

2 Graphical User Interface

This dialog box presents the component information that is stored in the
registry.

See “Registry Information” on page 6-3 for more information about these
fields. The Methods list box shows the name and M-file calling syntax of
each function within the component.

Help Menu
The Help menu provides access to the context-sensitive help for the MATLAB
Builder window.

2-6

Project Settings Dialog Box

Project Settings Dialog Box
For new projects, click File > New > Project to open the New Project
Settings dialog box.

For existing projects, click File > Open > Project > Settings to open the
Project Settings dialog box.

The project settings are as follows:

Setting Description

Component name Name of the component you are creating with this
project.

Class name Name of a class that you want to add.

Classes List of classes currently in this project.

Project version Version number of this project.

Project directory Location for output files generated by Excel Builder,
including the project file

Select Create a singleton MCR if your users can
share a single installation of the MCR.

Select Build debug version to add debugging
information to the classes generated by Excel
Builder.

Compiler options

Select Show verbose output to display all details
and create a complete log of the build process.

Note See “Versioning” on page A-9 for more information about how Excel
Builder handles version numbering.

2-7

2 Graphical User Interface

Component Information Window
This listing presents the component information that is stored in the registry.

See componentinfo for an explanation of these fields.

2-8

Package Files Dialog Box

Package Files Dialog Box
Use the Package Files dialog box to specify the files and properties that the
Builder should use to create a self-extracting executable for the component
that you have built.

Click Add File to add files to the package. You do not need to add any files
that are in the project.

Click Remove File to delete files from the package.

Select or clear the Include MCR check box to include or exclude MATLAB
Component Runtime (MCR) from the package. MCR is a stand-alone set of
shared libraries that enables the execution of M-files. MCR provides complete
support for all MATLAB language features.

Click MCR Location to specify the directory location of MCRInstaller.zip.

After you have specified the files that you want to include in the package,
click Create.
Here is an illustration of the Package Files dialog box:

2-9

2 Graphical User Interface

2-10

3

Programming with
MATLAB Builder for Excel

Overview of Integration Process
(p. 3-2)

Provides general information on
integrating MATLAB Builder for
Excel components into Excel using
the VBA programming environment.

When to Use a Formula Function or
a Subroutine (p. 3-3)

Discusses the two basic procedure
types: functions and subroutines.

Initializing MATLAB Builder for
Excel Libraries with Excel (p. 3-4)

Describes initialization of the
supporting libraries with the current
instance of Excel.

Creating an Instance of a Class
(p. 3-6)

Discusses creation of an instance
of the class that contains a classs
method.

Calling the Methods of a Class
Instance (p. 3-9)

Describes calling a class method to
access compiled MATLAB functions.

Processing varargin and varargout
Arguments (p. 3-11)

Describes how to add varargin
and varargout parameters to the
argument list of a class method.

Handling Errors During a Method
Call (p. 3-13)

Describes the Visual Basic exception
handling capability.

Modifying Flags (p. 3-14) Describes array formatting and data
conversion flags.

3 Programming with MATLAB Builder for Excel

Overview of Integration Process
Each MATLAB Builder for Excel component is built as a COM object that you
can access from Microsoft Excel through Visual Basic for Applications (VBA).
This topic provides general information on how to integrate Excel Builder
components into Excel using the VBA programming environment. It assumes
that you have a working knowledge of VBA and is not intended to be discuss
how to program in Visual Basic. Refer to the VBA documentation provided
with Excel for general programming information.

You can integrate Excel Builder components into a VBA project by creating a
simple code module with functions and/or subroutines that load the necessary
components, call methods as needed, and process any errors. In general, you
need to address the following items in any code written to use Excel Builder
components:

• “When to Use a Formula Function or a Subroutine” on page 3-3

• “Initializing MATLAB Builder for Excel Libraries with Excel” on page 3-4

• “Creating an Instance of a Class” on page 3-6

• “Calling the Methods of a Class Instance” on page 3-9

• “Processing varargin and varargout Arguments” on page 3-11

• “Handling Errors During a Method Call” on page 3-13

• “Modifying Flags” on page 3-14

Note All code samples in these topics are for illustration purposes and
reference a hypothetical class named myclass contained in a component
named mycomponent with a version number of 1.0.

For a list of working code examples, go to the product page for MATLAB
Builder for Excel and click Examples in Documentation.

3-2

http://www.mathworks.com/access/helpdesk/help/toolbox/matlabxl/

When to Use a Formula Function or a Subroutine

When to Use a Formula Function or a Subroutine
VBA provides two basic procedure types: functions and subroutines. You
access a VBA function directly from a cell in a worksheet as a formula
function and access a subroutine as a general macro. Function procedures
are useful when the original MATLAB function takes one or more inputs and
returns one scalar output. When the original MATLAB function returns an
array of values or multiple outputs, you need a subroutine procedure to map
these outputs into multiple cells/ranges in the worksheet. When you create
a MATLAB Builder for Excel component, you produce a VBA module (.bas
file). This file contains simple call wrappers, each implemented as a function
procedure for each method of the class.

3-3

3 Programming with MATLAB Builder for Excel

Initializing MATLAB Builder for Excel Libraries with Excel
Before you use any MATLAB Builder for Excel component, initialize the
supporting libraries with the current instance of Excel. Do this once for an
Excel session that uses Excel Builder components.

To do this initialization, call the utility library function MWInitApplication,
which is a member of the MWUtil class. This class is part of the MWComUtil
library. See “Utility Library Classes” on page C-3 for a detailed discussion of
the functionality provided with this library.

One way to add this initialization code into a VBA module is to provide
a subroutine that does the initialization once, and simply exits for all
subsequent calls. The following Visual Basic code sample initializes the
libraries with the current instance of Excel. A global variable of type Object
named MCLUtil holds an instance of the MWUtil class, and another global
variable of type Boolean named bModuleInitialized stores the status of
the initialization process. The private subroutine InitModule() creates
an instance of the MWComUtil class and calls the MWInitApplication
method with an argument of Application. Once this function succeeds, all
subsequent calls exit without reinitializing.

Dim MCLUtil As Object
Dim bModuleInitialized As Boolean

Private Sub InitModule()
If Not bModuleInitialized Then

On Error GoTo Handle_Error
If MCLUtil Is Nothing Then

Set MCLUtil = CreateObject("MWComUtil.MWUtil")
End If
Call MCLUtil.MWInitApplication(Application)
bModuleInitialized = True
Exit Sub

Handle_Error:
bModuleInitialized = False

End If
End Sub

3-4

Initializing MATLAB Builder for Excel Libraries with Excel

This code is similar to the default initialization code generated in the VBA
module created when the component is built. Each function that uses Excel
Builder components can include a call to InitModule at the beginning to
ensure that the initialization always gets performed as needed.

3-5

3 Programming with MATLAB Builder for Excel

Creating an Instance of a Class
Before calling a class method (compiled MATLAB function), you must
create an instance of the class that contains the method. VBA provides two
techniques for doing this:

• CreateObject function

• New operator

CreateObject Function
This method uses the Visual Basic application program interface (API)
CreateObject function to create an instance of the class. To use this method,
Dim a variable of type Object to hold a reference to the class instance and
call CreateObject using the class programmatic identifier (ProgID) as an
argument, as shown in the next example.

Function foo(x1 As Variant, x2 As Variant) As Variant
Dim aClass As Object

On Error Goto Handle_Error
aClass = CreateObject("mycomponent.myclass.1_0")
' (call some methods on aClass)
Exit Function

Handle_Error:
foo = Err.Description

End Function

New Operator
This method uses the Visual Basic New operator on a variable explicitly
dimensioned as the class to be created. Before using this method, you must
reference the type library containing the class in the current VBA project.
Do this by selecting the Tools menu from the Visual Basic editor, and then
selecting References to display the Available References list. From this
list select the necessary type library.

The following example illustrates using the New operator to create a class
instance. It assumes that you have selected mycomponent 1.0 Type
Library from the Available References list before calling this function.

3-6

Creating an Instance of a Class

Function foo(x1 As Variant, x2 As Variant) As Variant
Dim aClass As mycomponent.myclass

On Error Goto Handle_Error
Set aClass = New mycomponent.myclass
' (call some methods on aClass)
Exit Function

Handle_Error:
foo = Err.Description

End Function

In this example, the class instance could be dimensioned as simply myclass.
The full declaration in the form <component-name>.<class-name> guards
against name collisions that could occur if other libraries in the current
project contain types named myclass.

Both methods are equivalent in functionality. The first method does not
require a reference to the type library in the VBA project, while the second
results in faster code execution. The second method has the added advantage
of enabling the Auto-List-Members and Auto-Quick-Info capabilities of
the VBA editor to work with your classes. The default function wrappers
created with each built component all use the first method for object creation.

In the previous two examples, the class instance used to make the method
call was a local variable of the procedure. This creates and destroys a new
class instance for each call. An alternative approach is to declare one single
module-scoped class instance that is reused by all function calls, as in the
initialization code of the previous example.

The following example illustrates this technique with the second method:

Dim aClass As mycomponent.myclass

Function foo(x1 As Variant, x2 As Variant) As Variant
On Error Goto Handle_Error
If aClass Is Nothing Then

Set aClass = New mycomponent.myclass
End If
' (call some methods on aClass)
Exit Function

3-7

3 Programming with MATLAB Builder for Excel

Handle_Error:
foo = Err.Description

End Function

3-8

Calling the Methods of a Class Instance

Calling the Methods of a Class Instance
After you have created a class instance, you can call the class methods
to access the compiled MATLAB functions. MATLAB Builder for Excel
applies a standard mapping from the original MATLAB function syntax to
the method’s argument list. See “Calling Conventions” on page A-11 for a
detailed description of the mapping from MATLAB functions to COM class
method calls.

When a method has output arguments, the first argument is always nargout,
which is of type Long. This input parameter passes the normal MATLAB
nargout parameter to the compiled function and specifies how many outputs
are requested. Methods that do not have output arguments do not pass
a nargout argument. Following nargout are the output parameters listed
in the same order as they appear on the left side of the original MATLAB
function. Next come the input parameters listed in the same order as they
appear on the right side of the original MATLAB function. All input and
output arguments are typed as Variant, the default Visual Basic data type.

The Variant type can hold any of the basic VBA types, arrays of any type,
and object references. See “Data Conversion Rules” on page B-2 for a detailed
description of how to convert Variants of any basic type to and from MATLAB
data types. In general, you can supply any Visual Basic type as an argument
to a class method, with the exception of Visual Basic UDTs. You can also pass
Excel Range objects directly as input and output arguments.

When you pass a simple Variant type as an output parameter, the called
method allocates the received data and frees the original contents of the
Variant. In this case it is sufficient to dimension each output argument as
a single Variant. When an object type (like an Excel Range) is passed as an
output parameter, the object reference is passed in both directions, and the
object’s Value property receives the data.

The following examples illustrate the process of passing input and output
parameters from VBA to Excel Builder component class methods.

The first example is a formula function that takes two inputs and returns one
output. This function dispatches the call to a class method that corresponds to
a MATLAB function of the form function y = foo(x1,x2).

3-9

3 Programming with MATLAB Builder for Excel

Function foo(x1 As Variant, x2 As Variant) As Variant
Dim aClass As Object
Dim y As Variant

On Error Goto Handle_Error
aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(1,y,x1,x2)
foo = y
Exit Function

Handle_Error:
foo = Err.Description

End Function

The second example rewrites the same function as a subroutine and uses
Excel ranges for input and output.

Sub foo(Rout As Range, Rin1 As Range, Rin2 As Range)
Dim aClass As Object

On Error Goto Handle_Error
aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(1,Rout,Rin1,Rin2)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

3-10

Processing varargin and varargout Arguments

Processing varargin and varargout Arguments
When varargin and/or varargout are present in the MATLAB function that
you are using for the Excel component, these parameters are added to the
argument list of the class method as the last input/output parameters in the
list. You can pass multiple arguments as a varargin array by creating a
Variant array, assigning each element of the array to the respective input
argument.

The following example creates a varargin array to call a method resulting
from a MATLAB function of the form y = foo(varargin):

Function foo(x1 As Variant, x2 As Variant, x3 As Varaint, _
x4 As Variant, x5 As Variant) As Variant

Dim aClass As Object
Dim v(1 To 5) As Variant
Dim y As Variant

On Error Goto Handle_Error
v(1) = x1
v(2) = x2
v(3) = x3
v(4) = x4
v(5) = x5
aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(1,y,v)
foo = y
Exit Function

Handle_Error:
foo = Err.Description

End Function

The MWUtil class included in the MWComUtil utility library provides the
MWPack helper function to create varargin parameters. See “Utility Library
Classes” on page C-3 for more details.

The next example processes a varargout parameter into three separate Excel
Ranges. This function uses the MWUnpack function in the utility library. The
MATLAB function used is varargout = foo(x1,x2).

3-11

3 Programming with MATLAB Builder for Excel

Sub foo(Rout1 As Range, Rout2 As Range, Rout3 As Range, _
Rin1 As Range, Rin2 As Range)

Dim aClass As Object
Dim aUtil As Object
Dim v As Variant

On Error Goto Handle_Error
aUtil = CreateObject("MWComUtil.MWUtil")
aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(3,v,Rin1,Rin2)
Call aUtil.MWUnpack(v,0,True,Rout1,Rout2,Rout3)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

3-12

Handling Errors During a Method Call

Handling Errors During a Method Call
Errors that occur while creating a class instance or during a class method
create an exception in the current procedure. Visual Basic provides
an exception handling capability through the On Error Goto <label>
statement, in which the program execution jumps to <label> when an error
occurs. (<label> must be located in the same procedure as the On Error
Goto statement). All errors are handled this way, including errors within
the original MATLAB code. An exception creates a Visual Basic ErrObject
object in the current context in a variable called Err. (See the Visual Basic for
Applications documentation for a detailed discussion on VBA error handling.)
All of the examples in this section illustrate the typical error trapping logic
used in function call wrappers for MATLAB Builder for Excel components.

3-13

3 Programming with MATLAB Builder for Excel

Modifying Flags
Each MATLAB Builder for Excel component exposes a single read/write
property named MWFlags of type MWFlags. The MWFlags property consists of
two sets of constants: array formatting flags and data conversion flags. Array
formatting flags affect the transformation of arrays, whereas data conversion
flags deal with type conversions of individual array elements.

The data conversion flags change selected behaviors of the data conversion
process from Variants to MATLAB types and vice versa. By default, Excel
Builder components allow setting data conversion flags at the class level
through the MWFlags class property. This holds true for all Visual Basic
types, with the exception of the Excel Builder MWStruct, MWField, MWComplex,
MWSparse, and MWArg types. Each of these types exposes its own MWFlags
property and ignores the properties of the class whose method is being
called. The MWArg class is supplied specifically for the case when a particular
argument needs different settings from the default class properties.

This section provides a general discussion of how to set these flags and what
they do. See “Class MWFlags” on page C-10 for a detailed discussion of the
MWFlags type, as well as additional code samples.

Array Formatting Flags
Array formatting flags guide the data conversion to produce either a MATLAB
cell array or matrix from general Variant data on input or to produce an array
of Variants or a single Variant containing an array of a basic type on output.

The following examples assume that you have referenced the MWComUtil
library in the current project by selecting Tools > References and selecting
MWComUtil 7.4 Type Library from the list:

Sub foo()
Dim aClass As mycomponent.myclass
Dim var1(1 To 2, 1 To 2), var2 As Variant
Dim x(1 To 2, 1 To 2) As Double
Dim y1,y2 As Variant

On Error Goto Handle_Error
var1(1,1) = 11#

3-14

Modifying Flags

var1(1,2) = 12#
var1(2,1) = 21#
var1(2,2) = 22#
x(1,1) = 11
x(1,2) = 12
x(2,1) = 21
x(2,2) = 22
var2 = x
Set aClass = New mycomponent.myclass
Call aClass.foo(1,y1,var1)
Call aClass.foo(1,y2,var2)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

Here, two Variant variables, var1 and var2 are constructed with the same
numerical data, but internally they are structured differently: var1 is a
2-by-2 array of Variants with each element containing a 1-by-1 Double, while
var2 is a 1-by-1 Variant containing a 2-by-2 array of Doubles.

According to the default data conversion rules listed in , var1 converts to a
2-by-2 cell array with each cell occupied by a 1-by-1 double, and var2 converts
directly to a 2-by-2 double matrix.

The InputArrayFormat flag controls how arrays of these two types are
handled. The two arrays convert to double matrices because the default value
for the InputArrayFormat flag is mwArrayFormatMatrix. This default is used
because array data originating from Excel ranges is always in the form of an
array of Variants (like var1 of the previous example), and MATLAB functions
most often deal with matrix arguments.

But what if you want a cell array? In this case, you set the InputArrayFormat
flag to mwArrayFormatCell. Do this by adding the following line after creating
the class and before the method call:

aClass .MWFlags.ArrayFormatFlags.InputArrayFormat =
mwArrayFormatCell

3-15

3 Programming with MATLAB Builder for Excel

Setting this flag presents all array input to the compiled MATLAB function as
cell arrays.

Similarly, you can manipulate the format of output arguments using the
OutputArrayFormat flag. You can also modify array output with the
AutoResizeOutput and TransposeOutput flags.

AutoResizeOutput is used for Excel Range objects passed directly as output
parameters. When this flag is set, the target range automatically resizes to fit
the resulting array. If this flag is not set, the target range must be at least as
large as the output array or the data is truncated.

The TransposeOutput flag transposes all array output. This flag is useful
when dealing with MATLAB functions that output one-dimensional arrays.
By default, MATLAB realizes one-dimensional arrays as 1-by-n matrices (row
vectors) that become rows in an Excel worksheet.

You may prefer worksheet columns from row vector output. This example
auto-resizes and transposes an output range:

Sub foo(Rout As Range, Rin As Range)
Dim aClass As mycomponent.myclass

On Error Goto Handle_Error
Set aClass = New mycomponent.myclass
aClass.MWFlags.ArrayFormatFlags.AutoResizeOutput = True
aClass.MWFlags.ArrayFormatFlags.TransposeOutput = True
Call aClass.foo(1,Rout,Rin)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

Data Conversion Flags
Data conversion flags deal with type conversions of individual array elements.
The two data conversion flags, CoerceNumericToType and InputDateFormat,
govern how numeric and date types are converted from VBA to MATLAB.
Consider the example:

Sub foo()

3-16

Modifying Flags

Dim aClass As mycomponent.myclass
Dim var1, var2 As Variant
Dim y As Variant

On Error Goto Handle_Error
var1 = 1
var2 = 2#
Set aClass = New mycomponent.myclass
Call aClass.foo(1,y,var1,var2)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

This example converts var1 of type Variant/Integer to an int16 and var2 of
type Variant/Double to a double.

If the original MATLAB function expects doubles for both arguments, this
code might cause an error. One solution is to assign a double to var1, but this
may not be possible or desirable. In such a case set the CoerceNumericToType
flag to mwTypeDouble, causing the data converter to convert all numeric input
to double. In the previous example, place the following line after creating the
class and before calling the methods:

aClass .MWFlags.DataConversionFlags.CoerceNumericToType =
mwTypeDouble

The InputDateFormat flag controls how the VBA Date type is converted.
This example sends the current date and time as an input argument and
converts it to a string:

Sub foo()
Dim aClass As mycomponent.myclass
Dim today As Date
Dim y As Variant

On Error Goto Handle_Error
today = Now
Set aClass = New mycomponent.myclass
aClass. MWFlags.DataConversionFlags.InputDateFormat =

3-17

3 Programming with MATLAB Builder for Excel

mwDateFormatString
Call aClass.foo(1,y,today)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

The next example uses an MWArg object to modify the conversion flags for
one argument in a method call. In this case the first output argument (y1)
is coerced to a Date, and the second output argument (y2) uses the current
default conversion flags supplied by aClass.

Sub foo(y1 As Variant, y2 As Variant)
Dim aClass As mycomponent.myclass
Dim ytemp As MWArg

Dim today As Date

On Error Goto Handle_Error
today = Now
Set aClass = New mycomponent.myclass
Set y1 = New MWArg
y1.MWFlags.DataConversionFlags.OutputAsDate = True
Call aClass.foo(2, ytemp, y2, today)
y1 = ytemp.Value
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

3-18

4

Usage Examples

Magic Square Examples (p. 4-2) Creates a magic square from a single
input integer.

Multiple Files and Variable
Arguments Example (p. 4-7)

Plots a line from 1 to an input
number.

Spectral Analysis Example (p. 4-15) Creates a comprehensive Excel
add-in to perform spectral analysis.

4 Usage Examples

Magic Square Examples
The M-file mymagic takes a single input, an integer, and creates a magic
square of that size.

The Excel file mymagic.xls uses this function in three different ways:

• The first illustration calls the function mymagic with a value of 4. The
function returns a magic square of size 4 and populates a range of Excel
cells with that magic square.

• The second illustration uses the transpose flag to transpose a magic square
of size 4.

• The third illustration resizes the output to a higher value and moves its
location within the Excel worksheet.

Note To get started, copy the distributed directory xlmagic from
<matlab>\toolbox\matlabxl\examples\xlmagic to <matlab>\work.

Creating the Project

1 From the MATLAB command prompt, change directories to <matlab>\work.

2 If you have not already done so, execute the following command in
MATLAB:

mbuild -setup

Be sure to choose a supported compiler. See Supported Compilers.

3 Enter the command mxltool to start the MATLAB Builder.

4 Click File > New Project.

This opens the New Project Settings dialog box.

4-2

http://www.mathworks.com/support/tech-notes/1600/1601.shtml

Magic Square Examples

5 Enter the following settings:

a. In the Component name field enter the component name xlmagic.

b. Press Tab to move to Class name

This automatically fills in the Classes field with the name
xlmagicclass. Leave this text in the Classes field.

c. The version has a default of 1.0. Leave this version as is.

d. The Project directory field contains a default of a combination of the
directory where MATLAB Builder for Excel was started, <matlab>\work,
and the Component name, xlmagic. You can change this to any
directory that you choose. If the directory you choose does not exist, you
will be asked to create it.

e. Leave all Compiler options cleared.

6 Click OK to create the xlmagic project.

4-3

4 Usage Examples

Building the Project

1 On the MATLAB Builder window, click Add File.

2 Select the file mymagic.m from the directory <matlab>\work\xlmagic and
click Open.

3 Click Build > Excel/COM Object.

Adding the Excel Builder COM Function to Excel

1 Start Excel on your system.

2 Open the file <matlab>\work\xlmagic\mymagic.xls.

Note If an Excel prompt says that this file contains macros, click Enable
Macros to run this example.

Illustration 1. Output Magic Square Results to Excel
From the Excel main window (not the Visual Basic editor), open the Macro
dialog box by pressing the Alt and F8 keys simultaneously, or by clicking
Tools > Macro > Macros.

Select mymagic from the list and click Run. This procedure returns a magic
square of size 4 beginning in cell B2.

4-4

Magic Square Examples

Illustration 2. Transpose the Output
Reopen the Macro dialog box, select the mymagic_transpose macro and click
Run. This procedure returns a magic square of size 4 transposed, beginning
in cell B14.

Illustration 3. Resize the Output
Reopen the Macro dialog box, select the mymagic_resize macro, and click
Run. This procedure returns a magic square of size 4 beginning in cell B32.

Change the value of 4 in cell A32 to a higher value and rerun this macro. A
magic square of the size you specified in cell A32 is returned, beginning in
cell B32.

Inspecting the Visual Basic Code

1 From the Excel main window, click Tools > Macro > Visual Basic Editor.

2 When the Visual Basic Editor opens, in the Project - VBAProject window,
double-click to expand VBAProject (mymagic.xls)

4-5

4 Usage Examples

3 Expand the Modules folder and double-click the Module1 module.

This opens the VB Code window with the code for this project, as shown:

4-6

Multiple Files and Variable Arguments Example

Multiple Files and Variable Arguments Example
The M-file, myplot, takes a single integer input and plots a line from 1 to
that number.

The M-file, mysum, takes an input of varargin of type integer, adds all the
numbers, and returns the result.

The M-file, myprimes, takes a single integer input n and returns all the prime
numbers less than or equal to n.

The Microsoft Excel file, mymulti.xls, demonstrates these functions in
several ways.

Note To get started, copy the distributed directory xlmulti from
<matlab>\toolbox\matlabxl\examples\xlmulti to <matlab>\work.

Creating the Project

1 From the MATLAB command prompt, change directories to <matlab>\work.

2 If you have not already done so, execute the following command in
MATLAB:

mbuild -setup

Be sure to choose a supported compiler. See Supported Compilers.

3 Enter the command mxltool to start the MATLAB Builder.

4 Click File > New Project.

This opens the New Project Settings dialog box.

4-7

http://www.mathworks.com/support/tech-notes/1600/1601.shtml

4 Usage Examples

5 Enter the following settings:

a. In the Component name field enter the component name xlmulti. .

b. Press Tab to move to Class name

This automatically fills in the Classes field with the name
xlmulticlass. Leave this text in the Classes field.

c. The version has a default of 1.0. Leave this version as is.

d. The Project directory field contains a default of a combination of the
directory where MATLAB Builder for Excel was started, <matlab>\work,
and the Component name, xlmulti. You can change this to any
directory that you choose. If the directory you choose does not exist, you
will be asked to create it.

e. Leave all Compiler options cleared.

6 Click OK to create the xlmulti project.

4-8

Multiple Files and Variable Arguments Example

Building the Project

1 On the MATLAB Builder window, click Add File.

2 Select the file myplot.m from the directory <matlab>\work\xlmulti and
click Open.

3 Repeat steps 1 and 2 to add the files myprimes.m and mysum.m.

4 Click Build > Excel/COM Object.

Adding the Excel Builder COM Function to Excel

1 Start Excel on your system.

2 Open the file <matlab>\work\xlmagic\mymagic.xls.

Note If an Excel prompt says that this file contains macros, click Enable
Macros to run this example.

The example appears as shown:

4-9

4 Usage Examples

Illustration 4: Calling myplot
This illustration calls the function myplot with a value of 4. To execute the
function, make A7 the active cell. Press F2 and then Enter.

4-10

Multiple Files and Variable Arguments Example

This procedure plots a line from 1 through 4 in a MATLAB Figure window.
This graphic can be manipulated as if it were called from MATLAB directly.
The calling cell contains 0 because the function does not return a value.

Illustration 5: Calling mysum Four Different Ways
This illustration calls the function mysum in four different ways:

• The first (cell A14) takes the values 1 through 10, adds them, and returns
the result of 55.

4-11

4 Usage Examples

• The second (cell A19) takes a range object that is a range of cells with the
values 1 through 10, adds them, and returns the result of 55.

• The third (cell A24) takes several range objects, adds them, and returns the
result of 120. This illustration demonstrates that the ranges do not need to
be the same size and that all the cells do not have to have a value.

• The fourth (cell A30) takes a combination of a range object and explicitly
stated values, adds them, and returns the result of 16.

This illustration runs when the Excel file is opened. To reactivate the
illustration, activate the appropriate cell. Then press F2 followed by Enter.

Illustration 6: myprimes Macro
In this illustration, the macro myprimes calls the function myprimes.m with
an initial value of 10 in cell A42. The function returns all the prime numbers
less than 10 to cells B42 through E42.

4-12

Multiple Files and Variable Arguments Example

To execute the macro, from the main Excel window (not the Visual Basic
Editor), open the Macro dialog box, by pressing the Alt and F8 keys
simultaneously, or by clicking Tools > Macro > Macros.

Select myprimes from the list and click Run.

This function automatically resizes if the returned output is larger than the
output range specified. Change the value in cell A42 to a number larger than
10. Then rerun the macro. The output returns all prime numbers less than
the number you entered in cell A42.

4-13

4 Usage Examples

Inspecting the Visual Basic Code

1 On the Excel main window, click Tools > Macro > Visual Basic Editor.

2 On the Visual Basic Editor, in the Project - VBAProject window, double-click
to expand VBAProject (mymulti.xls)

3 Expand the Modules folder and double-click the Module1 module. This
opens the VB Code window with the code for this project, as shown

4-14

Spectral Analysis Example

Spectral Analysis Example
This example illustrates the creation of a comprehensive Excel add-in to
perform spectral analysis. It requires knowledge of Visual Basic forms and
controls, as well as Excel workbook events. See the VBA documentation for a
complete discussion of these topics.

The example creates an Excel add-in that performs a fast Fourier transform
(FFT) on an input data set located in a designated worksheet range. The
function returns the FFT results, an array of frequency points, and the power
spectral density of the input data. It places these results into ranges you
indicate in the current worksheet. You can also optionally plot the power
spectral density.

You develop the function so that you can invoke it from the Excel Tools menu
and can select input and output ranges through a GUI.

Creating the add-in requires four basic steps:

1 Build a stand-alone COM component from MATLAB code.

2 Implement the necessary VBA code to collect input and dispatch the calls
to your component.

3 Create the GUI.

4 Create an Excel add-in and package all necessary components for
application deployment.

Building the Component
Your component will have one class with two methods, computefft and
plotfft. The computefft method computes the FFT and power spectral
density of the input data and computes a vector of frequency points based
on the length of the data entered and the sampling interval. The plotfft
method performs the same operations as computefft, but also plots the
input data and the power spectral density in a MATLAB Figure window. The
MATLAB code for these two methods resides in two M-files, computefft.m
and plotfft.m.

computefft.m:

4-15

4 Usage Examples

function [fftdata, freq, powerspect] = computefft(data, interval)
if (isempty(data))

fftdata = [];
freq = [];
powerspect = [];
return;

end
if (interval <= 0)

error('Sampling interval must be greater then zero');
return;

end
fftdata = fft(data);
freq = (0:length(fftdata)-1)/(length(fftdata)*interval);
powerspect = abs(fftdata)/(sqrt(length(fftdata)));

plotfft.m:

function [fftdata, freq, powerspect] = plotfft(data, interval)
[fftdata, freq, powerspect] = computefft(data, interval);
len = length(fftdata);
if (len <= 0)

return;
end
t = 0:interval:(len-1)*interval;
subplot(2,1,1), plot(t, data)
xlabel('Time'), grid on
title('Time domain signal')
subplot(2,1,2), plot(freq(1:len/2), powerspect(1:len/2))
xlabel('Frequency (Hz)'), grid on
title('Power spectral density')

To proceed with the actual building of the component, follow these steps:

1 If you have not already done so, execute the following command in
MATLAB:

mbuild -setup

Be sure to choose a supported compiler. See Supported Compilers.

4-16

http://www.mathworks.com/support/tech-notes/1600/1601.shtml

Spectral Analysis Example

2 Start mxltool. See “Menus” on page 2-2 for a discussion of using mxltool
to build a COM component from a collection of MATLAB M-files.

3 Create a new project with these settings:

• Component name: Fourier

• Class name: Fourier

• Project version: 1.0

4 Add the computefft.m and plotfft.m M-files to the project.

5 Save the project. Make note of the project directory because you will refer
to it later when you save your add-in.

6 Click Build to create the component.

Integrating the Component Using VBA
Having built your component, you can implement the necessary VBA code to
integrate it into Excel.

Selecting the Libraries
Follow these steps to open Excel and select the libraries you need to develop
the add-in:

1 Start Excel on your system.

2 From the Excel main menu, click Tools > Macro > Visual Basic Editor.

3 When the Visual Basic Editor starts, click Tools > References to open
the Project References dialog box.

4 Select Fourier 1.0 Type Library and MWComUtil 7.4 Type Library
from the list.

Creating the Main VB Code Module for the Application. The add-in
requires some initialization code and some global variables to hold the
application’s state between function invocations. To achieve this, implement a
Visual Basic code module to manage these tasks, as follows:

4-17

4 Usage Examples

1 Right-click the VBAProject item in the project window and click
Insert > Module.

A new module appears under Modules in the VBA Project.

2 In the module’s property page, set the Name property to FourierMain.
See the next figure.

3 Enter the following code in the FourierMain module:

'

' FourierMain - Main module stores global state of controls

' and provides initialization code

'

Public theFourier As Fourier.Fourier 'Global instance of Fourier object

Public theFFTData As MWComplex 'Global instance of MWComplex to accept FFT

Public InputData As Range 'Input data range

Public Interval As Double 'Sampling interval

Public Frequency As Range 'Output frequency data range

4-18

Spectral Analysis Example

Public PowerSpect As Range 'Output power spectral density range

Public bPlot As Boolean 'Holds the state of plot flag

Public theUtil As MWUtil 'Global instance of MWUtil object

Public bInitialized As Boolean 'Module-is-initialized flag

Private Sub LoadFourier()

'Initializes globals and Loads the Spectral Analysis form

Dim MainForm As frmFourier

On Error GoTo Handle_Error

Call InitApp

Set MainForm = New frmFourier

Call MainForm.Show

Exit Sub

Handle_Error:

MsgBox (Err.Description)

End Sub

Private Sub InitApp()

'Initializes classes and libraries. Executes once

'for a given session of Excel

If bInitialized Then Exit Sub

On Error GoTo Handle_Error

If theUtil Is Nothing Then

Set theUtil = New MWUtil

Call theUtil.MWInitApplication(Application)

End If

If theFourier Is Nothing Then

Set theFourier = New Fourier.Fourier

End If

If theFFTData Is Nothing Then

Set theFFTData = New MWComplex

End If

bInitialized = True

Exit Sub

Handle_Error:

MsgBox (Err.Description)

End Sub

4-19

4 Usage Examples

Creating the Visual Basic Form
The next step in the integration process develops a user interface for your
add-in using the Visual Basic Editor. Follow these steps to create a new user
form and populate it with the necessary controls:

1 Right-click VBAProject in the VBA project window and click
Insert > UserForm.

A new form appears under Forms in the VBA project window.

2 In the form’s property page, set the Name property to frmFourier and the
Caption property to Spectral Analysis.

3 Add a series of controls to the blank form to complete the dialog box, as
summarized in the following table:

4-20

Spectral Analysis Example

Controls Needed for Spectral Analysis Example

Control Type Control Name Properties Purpose

CheckBox chkPlot Caption =
Plot time
domain signal
and power
spectral
density

Plots input
data and power
spectral density.

CommandButton btnOK Caption = OK

Default = True

Executes the
function and
dismisses the
dialog box.

CommandButton btnCancel Caption =
Cancel

Cancel = True

Dismisses
the dialog
box without
executing the
function.

Frame Frame1 Caption = Input
Data

Groups all input
controls.

Frame Frame2 Caption =
Output Data

Groups all
output controls.

Label Label1 Caption = Input
Data:

Labels the
RefEdit for
input data.

TextBox edtSample N/A N/A

Label Label2 Caption =
Sampling
Interval

Labels the
TextBox for
sampling
interval.

Label Label3 Caption =
Frequency:

Labels the
RefEdit for
frequency
output.

4-21

4 Usage Examples

Controls Needed for Spectral Analysis Example (Continued)

Control Type Control Name Properties Purpose

Label Label4 Caption = FFT -
Real Part:

Labels the
RefEdit for real
part of FFT.

Label Label5 Caption = FFT
- Imaginary
Part:

Labels the
RefEdit for
imaginary part
of FFT.

Label Label6 Caption
= Power
Spectral
Density

Labels the
RefEdit for
power spectral
density.

RefEdit refedtInput N/A Selects range for
input data.

RefEdit refedtFreq N/A Selects output
range for
frequency
points.

RefEdit refedtReal N/A Selects output
range for real
part of FFT of
input data.

RefEdit refedtImag N/A Selects output
range for
imaginary part
of FFT of input
data.

RefEdit refedtPowSpect N/A Selects output
range for power
spectral density
of input data.

The following figure shows the controls layout on the form:

4-22

Spectral Analysis Example

4 When the form and controls are complete, right-click the form and click
View Code.

The following code listing shows the code to implement. Notice that this
code references the control and variable names listed in Controls Needed
for Spectral Analysis Example on page 4-21. If you used different names
for any of the controls or any global variable, change this code to reflect
those differences.

'

'frmFourier Event handlers

'

Private Sub UserForm_Activate()

'UserForm Activate event handler. This function gets called before

'showing the form, and initializes all controls with values stored

'in global variables.

On Error GoTo Handle_Error

If theFourier Is Nothing Or theFFTData Is Nothing Then Exit Sub

'Initialize controls with current state

If Not InputData Is Nothing Then

refedtInput.Text = InputData.Address

End If

4-23

4 Usage Examples

edtSample.Text = Format(Interval)

If Not Frequency Is Nothing Then

refedtFreq.Text = Frequency.Address

End If

If Not IsEmpty (theFFTData.Real) Then

If IsObject(theFFTData.Real) And TypeOf theFFTData.Real Is Range Then

refedtReal.Text = theFFTData.Real.Address

End If

End If

If Not IsEmpty (theFFTData.Imag) Then

If IsObject(theFFTData.Imag) And TypeOf theFFTData.Imag Is Range Then

refedtImag.Text = theFFTData.Imag.Address

End If

End If

If Not PowerSpect Is Nothing Then

refedtPowSpect.Text = PowerSpect.Address

End If

chkPlot.Value = bPlot

Exit Sub

Handle_Error:

MsgBox (Err.Description)

End Sub

Private Sub btnCancel_Click()

'Cancel button click event handler. Exits form without computing fft

'or updating variables.

Unload Me

End Sub

Private Sub btnOK_Click()

'OK button click event handler. Updates state of all variables from controls

'and executes the computefft or plotfft method.

Dim R As Range

If theFourier Is Nothing Or theFFTData Is Nothing Then GoTo Exit_Form

On Error Resume Next

'Process inputs

Set R = Range(refedtInput.Text)

If Err <> 0 Then

MsgBox ("Invalid range entered for Input Data")

Exit Sub

4-24

Spectral Analysis Example

End If

Set InputData = R

Interval = CDbl(edtSample.Text)

If Err <> 0 Or Interval <= 0 Then

MsgBox ("Sampling interval must be greater than zero")

Exit Sub

End If

'Process Outputs

Set R = Range(refedtFreq.Text)

If Err = 0 Then

Set Frequency = R

End If

Set R = Range(refedtReal.Text)

If Err = 0 Then

theFFTData.Real = R

End If

Set R = Range(refedtImag.Text)

If Err = 0 Then

theFFTData.Imag = R

End If

Set R = Range(refedtPowSpect.Text)

If Err = 0 Then

Set PowerSpect = R

End If

bPlot = chkPlot.Value

'Compute the fft and optionally plot power spectral density

If bPlot Then

Call theFourier.plotfft(3, theFFTData, Frequency, PowerSpect, _

InputData, Interval)

Else

Call theFourier.computefft(3, theFFTData, Frequency, PowerSpect, _

InputData, Interval)

End If

GoTo Exit_Form

Handle_Error:

MsgBox (Err.Description)

Exit_Form:

Unload Me

End Sub

4-25

4 Usage Examples

Adding the Spectral Analysis Menu Item to Excel
The last step in the integration process adds a menu item to Excel so that
you can open the tool from the Excel Tools menu. To do this you add event
handlers for the workbook’s AddinInstall and AddinUninstall events that
install and uninstall menu items. The menu item calls the LoadFourier
function in the FourierMain module.

Follow these steps to implement the menu item:

1 Right-click the ThisWorkbook item in the VBA project window and click
View Code.

2 Place the following code into ThisWorkbook.

Private Sub Workbook_AddinInstall()

'Called when Addin is installed

Call AddFourierMenuItem

4-26

Spectral Analysis Example

End Sub

Private Sub Workbook_AddinUninstall()

'Called when Addin is uninstalled

Call RemoveFourierMenuItem

End Sub

Private Sub AddFourierMenuItem()

Dim ToolsMenu As CommandBarPopup

Dim NewMenuItem As CommandBarButton

'Remove if already exists

Call RemoveFourierMenuItem

'Find Tools menu

Set ToolsMenu = Application.CommandBars(1).FindControl(ID:=30007)

If ToolsMenu Is Nothing Then Exit Sub

'Add Spectral Analysis menu item

Set NewMenuItem = ToolsMenu.Controls.Add(Type:=msoControlButton)

NewMenuItem.Caption = "Spectral Analysis..."

NewMenuItem.OnAction = "LoadFourier"

End Sub

Private Sub RemoveFourierMenuItem()

Dim CmdBar As CommandBar

Dim Ctrl As CommandBarControl

On Error Resume Next

'Find tools menu and remove Spectral Analysis menu item

Set CmdBar = Application.CommandBars(1)

Set Ctrl = CmdBar.FindControl(ID:=30007)

Call Ctrl.Controls("Spectral Analysis...").Delete

End Sub

3 Save the add-in.

Now that the VBA coding is complete, you can save the add-in. Save
this file into the <project-directory>\distrib directory that mxltool
created when building the project. Here, <project-directory> refers to
the project directory that mxltool used to save the Fourier project. Name
the add-in Spectral Analysis.

4-27

4 Usage Examples

a. From the Excel main menu, select File > Properties.

b. When the Workbook Properties dialog box appears, click the
Summary tab, and enter Spectral Analysis as the workbook title.

c. Click OK to save the edits.

d. From the Excel main menu, click File > Save As.

e. When the Save As dialog box appears, select Microsoft Excel Add-In
(*.xla) as the file type, and browse to <project-directory>\distrib.

f. Enter Fourier.xla as the file name and click Save to save the add-in.

Testing the Add-In
Before distributing the add-in, test it with a sample problem.

Spectral analysis is commonly used to find the frequency components of a
signal buried in a noisy time domain signal. In this example you will create a
data representation of a signal containing two distinct components and add
to it a random component. This data along with the output will be stored in
columns of an Excel worksheet, and you will plot the time-domain signal
along with the power spectral density.

Creating the Test Problem
Follow these steps to create the test problem:

1 Start a new session of Excel with a blank workbook.

2 From the main menu click Tools > Add-Ins.

3 When the Add-Ins dialog box appears, click Browse.

4 Browse to the <project-directory>\distrib directory, select
Fourier.xla, and click OK.

The Spectral Analysis add-in appears in the available Add-Ins list and
is selected.

5 Click OK to load the add-in.

4-28

Spectral Analysis Example

This add-in installs a menu item under the Excel Tools menu. You can display
the Spectral Analysis GUI by selecting Tools>Spectral Analysis. Before
invoking the add-in, create some data, in this case a signal with components
at 15 and 40 Hz. Sample the signal for 10 seconds at a sampling rate of 0.01 s.
Put the time points into column A and the signal points into column B.

Creating the Data
Follow these steps to create the data:

1 Enter 0 for cell A1 in the current worksheet.

2 Click cell A2 and type the formula "= A1 + 0.01".

3 Click and hold the lower-right corner of cell A2 and drag the formula down
the column to cell A1001. This procedure fills the range A1:A1001 with the
interval 0 to 10 incremented by 0.01.

4 Click cell B1 and type the following formula

"= SIN(2*PI()*15*A1) + SIN(2*PI()*40*A1) + RAND()"

Repeat the drag procedure to copy this formula to all cells in the range
B1:B1001.

Running the Test
Using the column of data (column B), test the add-in as follows:

1 Select Tools > Spectral Analysisfrom the main menu.

2 Click the Input Data box.

3 Select the B1:B1001 range from the worksheet, or type this address into
the Input Data field.

4 In the Sampling Interval field, type 0.01.

5 Select Plot time domain signal and power spectral density.

4-29

4 Usage Examples

6 Enter C1:C1001 for frequency output, and likewise enter D1:D1001,
E1:E1001, and F1:F1001 for the FFT real and imaginary parts, and
spectral density.

7 Click OK to run the analysis.

The next figure shows the output.

The power spectral density reveals the two signals at 15 and 40 Hz.

4-30

Spectral Analysis Example

Packaging and Distributing the Add-In
As a final step, package the add-in, the COM component, and all supporting
libraries into a self-extracting executable. This package can be installed onto
other computers that need to use the Spectral Analysis add-in.

To package and distribute the add-in, follow these steps:

1 Return to mxltool. If mxltool has been dismissed, restart it and reload
the Fourier project.

2 Click Component > Package Component.

This command creates the Fourier.exe self-extracting executable.

3 To install this add-in onto another computer, copy the Fourier.exe
package to that machine, run it from a command prompt, and follow the
instructions.

4-31

4 Usage Examples

4-32

5

Function Wizard

Overview of the Function Wizard
(p. 5-2)

Describes the purpose and use of the
Function Wizard.

Installing the Function Wizard
Add-In (p. 5-3)

How to install the Add-In.

Starting the Function Wizard (p. 5-4) How to open the Function Viewer.

Understanding the Function Viewer
(p. 5-5)

How to load and execute functions.

Component Browser (p. 5-7) How to view components currently
installed.

Function Properties (p. 5-8) How to edit inputs and outputs to
functions.

Argument Properties (p. 5-12) How to select worksheet ranges and
specify values.

Function Utilities (p. 5-14) How to rename, copy, and move
functions.

5 Function Wizard

Overview of the Function Wizard
The Function Wizard enables you to pass Microsoft Excel (Excel 2000 or later)
worksheet values to a compiled MATLAB model and to return model output
to a cell or range of cells in the worksheet. The Function Wizard provides
an intuitive interface to Excel worksheets. Knowledge of Visual Basic for
Applications (VBA) programming is not required.

The Function Wizard reflects any changes that you make in the worksheets,
such as range selections. Going in the opposite direction, you can use the
Function Wizard to control the placement and output of data from MATLAB
functions to the worksheets.

The Function Wizard does not currently support the MATLAB struct,
sparse, and complex data types.

5-2

Installing the Function Wizard Add-In

Installing the Function Wizard Add-In
The Function Wizard GUI is contained in an Excel add-in (mlfunction.xla)
residing in the <matlab>\toolbox\matlabxl\matlabxl directory. You must
install this add-in before using the Function Wizard.

Follow these steps to install the add-in:

1 Click Tools > Add-Ins from the Excel main menu.

2 If the Function Wizard was previously installed, a reference to MATLAB
Function Wizard appears in the list. Select the item and click OK.

If the Function Wizard was not previously installed, click Browse and
proceed to the <matlab>\toolbox\matlabxl\matlabxl directory. Select
mlfunction.xla. Click OK on this dialog box and on the preceding one.

The Function Wizard is also packaged with all deployed components. When
a component is installed onto a separate machine, the Function Wizard is
placed into the top-level directory of the installed component. In this case see
the instructions above, substituting the installed component’s directory.

5-3

5 Function Wizard

Starting the Function Wizard
To start the Function Wizard, click Tools > MATLAB Functions from
the Excel menu bar. The starting point of the Function Wizard, called the
Function Viewer, now appears:

5-4

Understanding the Function Viewer

Understanding the Function Viewer
The Function Viewer controls the execution of worksheet functions. Use the
Function Viewer to organize the list of all currently loaded Excel Builder
functions.

Using the Function Viewer
The Function Viewer displays the names of all loaded functions. You can edit
this name to provide a more descriptive identifier. A check box for each entry
denotes the active/inactive state of each function. Inactive functions are not
executed when you click Execute.

Below the function list is a GROUP of eight buttons. To add a new component
to the list of loaded worksheet functions, click New (see “Component Browser”
on page 5-7).

Each of the other buttons performs a specific action on the currently selected
function. To select a function, left-click the list item. The row becomes
selected. You can change the current selection by left-clicking a different list
item, or by using the up and down arrow keys on your keyboard.

Loading and Executing Functions
To load and execute an Excel Builder function in your worksheet requires
three steps:

1 Load an Excel Builder component.

Click New on the Function Viewer to display the Component Browser.
(See “Component Browser” on page 5-7.) Use this browser to select the
component you want to load from the list of all currently installed Excel
Builder components. From the selected component, add the method that
you want to call.

2 Set the inputs, outputs, and other properties of your function.

Click Edit to display the Function Properties dialog box. (See “Function
Properties” on page 5-8.)

5-5

5 Function Wizard

3 Click Execute on the Function Viewer.

When you click Execute, functions execute in the order displayed in the
list.

5-6

Component Browser

Component Browser
The Component Browser lists all Excel Builder components currently
installed on the system. When you click New on the Function Viewer, this
dialog box appears:

The Component Browser lists each component by name and version.
Expanding a component reveals the class name at the next level. You can also
expand the class to reveal the MATLAB functions that make up the class
methods.

Select the desired method and click Add to add a function. To load all methods
of a class, select the class name and click Add. Added functions appear under
Current Selections on the right of the browser.

To remove a function before returning to the Function Viewer, select it under
Current Selections and click Remove.

5-7

5 Function Wizard

Function Properties
This group of dialog boxes sets properties and values for the inputs and
outputs. You can map inputs and outputs to ranges in your worksheet. You
can also rename a function with any of these dialog boxes.

When you click Edit on the Function Viewer, the Function Properties dialog
box appears, as shown:

The Add and Delete buttons become active when you click varargin
Arguments.

Click the Outputs tab to switch to editing outputs.

Editing Function Arguments
Function arguments may be either required arguments or
varargin/varargout arguments:

5-8

Function Properties

• Required arguments appear first on the left or right sides of a MATLAB
function and are not named varargin or varargout.

• varargin/varargout arguments always appear as the last input or output.
They let you specify a variable number of arguments.

Editing Required Arguments
To edit required arguments, select the argument from the list and click
Properties.

Before you can edit varargin/varargout arguments, you must first
explicitly add them using Add. If the MATLAB function does not have
varargin/varargout arguments, the ability to add arguments to the list is
disabled. After you have added varargin/varargout arguments, you can
edit them in the same way as required arguments. When you are editing
varargin/varargout arguments, the Function Properties dialog box appears
as shown:

5-9

5 Function Wizard

Editing Required Outputs
When you are editing required output arguments, the Function Properties
dialog box appears as shown:

The Add and Delete buttons become active when you click
varargout Arguments.

Click the Inputs tab to switch to editing inputs.

Editing varargout Outputs
When you are editing varargout outputs, the Function Properties dialog
box appears as shown:

5-10

Function Properties

5-11

5 Function Wizard

Argument Properties
The Argument Properties and related dialog boxes allow you to select
worksheet ranges or optionally enter a specific value for an input argument.
These dialog boxes are as follows:

• “Input Argument Properties Dialog Box” on page 5-12

• “Output Argument Properties Dialog Box” on page 5-13

Input Argument Properties Dialog Box
Here is an example of the Argument Properties dialog box for input
arguments. In this example, the input arguments have a range of A1 to A10.

From this dialog box you can

• Select the Range list to specify a range of current input arguments.

• Click Auto recalclulate on change to tell Excel Builder to recalculate
the current function when any cell in the current arugment changes.

• Select the Value list to set a single value for the current argument. Then
select the type from the Type list.

• Click Options to set the conversion options. Then set the options in the
Input Conversion Options dialog box as shown:

5-12

Argument Properties

Output Argument Properties Dialog Box
Here is an example of the Argument Properties dialog box for output
arguments. In this example, the output argument is A12.

From this dialog box you can

• From the Range list, select the worksheet range to be used as the output
argument.

• Select Auto resize to tell Excel Builder to adjust the output range to fit
the output array. This setting is useful when the target output from a
method call is a range of cells in an Excel worksheet and the output array
size and shape is not known at the time of the call.

• Select Transpose output to transpose the output arguments. This setting
is useful when calling a component where the MATLAB function returns
outputs as row vectors, and you want the data in columns.

• Select Output as date to coerce the output values to become Excel dates.

5-13

5 Function Wizard

Function Utilities
Excel Builder supports several function utilities, which you use via the
following dialog boxes:

• “Rename Function Dialog Box” on page 5-14

• “Copy Function Dialog Box” on page 5-14

• “Move Function Dialog Box” on page 5-15

Rename Function Dialog Box
Use the Rename Function dialog box to rename a function. To open this dialog
box, click Rename on the Function Viewer. Here is an example of this dialog
box, with mysum2 as the new function name:

In this dialog box, you can

• Enter a new name for the selected function.

• Click OK to save the new name and return to the Function Viewer.

• Click Cancel to return to the Function Viewer without saving the new
name.

Copy Function Dialog Box
Use the Copy Function dialog box to make copies of the current function. To
open this dialog box, click Copy on the Function Viewer.

The Copy Function dialog box has two tabs:

• The Standard tab creates a specified number of copies of the function while
copying any argument/range values you have set. Here is an illustration of
this dialog box, with the number of copies, set to 1:

5-14

Function Utilities

• The Advanced tab creates a rectangular array of copies of the current
function in the current worksheet, and optionally copies the cell contents of
ranges referenced by the function’s arguments.

When you set the number of rows and columns and the row/column
increments, the copy process automatically updates cell references by the
specified increment amounts.

- Positive increments move rows down and columns to the right.

- Negative increments move rows up and columns to the left.

The following example shows the Advanced tab:

Move Function Dialog Box
Use the Move Function dialog box to move the currently selected function to a
new position in the current worksheet.

When you set the row and column increments, the move process automatically
updates cell references by these values.

5-15

5 Function Wizard

• Positive increments move rows down and columns to the right.

• Negative increments move rows up and columns to the left.

You can also optionally move the cell contents of any ranges referenced by
the function.

Here is an illustration of the Move Function dialog box, set to move the
location by two rows and two columns, and to move the cell contents:

5-16

6

Functions — Alphabetical
List

componentinfo
mxltool

componentinfo

Purpose Query system registry about component created with MATLAB Builder
for Excel

Syntax componentinfo
componentinfo (component_name)
componentinfo (component_name, major_revision_number)
componentinfo (component_name, major_revision_number,
minor_revision_number)

Arguments component_name MATLAB string providing the name
of a MATLAB Builder for Excel
component. Names are case sensitive.
If this argument is not supplied, the
function returns information on all
installed components.

major_revision_number Component major revision number.
If this argument is not supplied, the
function returns information on all
major revisions.

minor_revision_number Component minor revision number.
Default value is 0.

Description componentinfo returns information for all components installed on
the system.

componentinfo (component_name) returns information for all revisions
of component_name.

componentinfo (component_name, major_revision_number) returns
information for the most recent minor revision corresponding to
major_revision_number of component_name.

componentinfo (component_name, major_revision_number,
minor_revision_number) returns information for the specific major and
minor version of component_name.

6-2

componentinfo

The return value is an array of structures representing all the registry
and type information needed to load and use the component.

When you supply a component name, major_revision_number and
minor_revision_number are interpreted as shown below.

Value Information Returned

> 0 Information on a specific major and minor revision

0 Information on the most recent revision.
When omitted, minor_revision_number is assumed to be
equal to 0.

< 0 Information on all versions

Note Although properties and events may appear in the output for
componentinfo, they are not supported by Excel Builder components.

Registry
Information

The information about a component has the fields shown in the
following table.

Registry Information Returned by componentinfo

Field Description

Name Component name

TypeLib Component type library

LIBID Component type library GUID

MajorRev Major version number

MinorRev Minor version number

6-3

componentinfo

Field Description

FileName Type library file name and
path. Since all Excel Builder
components have the type library
bound into the DLL, this file
name is the same as the DLL
name and path.

Interfaces An array of structures defining all
interface definitions in the type
library. Each structure contains
two fields:

• Name - Interface name

• IID - Interface GUID

CoClasses An array of structures defining all
COM classes in the component.
Each structure contains these
fields:

• Name - Class name

• CLSID - GUID of the class

• ProgID - Version dependent
program ID

• VerIndProgID - Version
independent program ID

• InprocServer32 - Full name
and path to component DLL

• Methods - A structure
containing function prototypes
of all class methods defined for
this interface. This structure
contains four fields:

6-4

componentinfo

Field Description

- IDL - An array of Interface
Description Language
function prototypes

- M - An array of MATLAB
function prototypes

- C - An array of C-language
function prototypes

- VB - An array of VBA
function prototypes

• Properties - A cell array
containing the names of
all class properties.

• Events - A structure
containing function
prototypes of all events
defined for this class.
This structure contains
four fields:

• IDL - An array of IDL
(Interface Description
Language) function
prototypes.

• M - An array of
MATLAB function
prototypes.

• C - An array of
C-Language function
prototypes.

• VB - An array of VBA
function prototypes

6-5

componentinfo

Examples Function Call Returns

Info = componentinfo Information for all installed
components.

Info =
componentinfo('mycomponent')

Information for all revisions
of mycomponent.

Info =
componentinfo('mycomponent',1,0)

Information for revision 1.0
of mycomponent.

See Also “Obtaining Registry Information” on page A-5

6-6

mxltool

Purpose Open GUI to MATLAB Builder for Excel

Syntax mxltool

Description The mxltool command displays the MATLAB Builder window, which is
the graphical user interface (GUI) for MATLAB Builder for Excel.

See Also “What Is MATLAB® Builder for Excel®?” on page 1-2

Chapter 3, “Programming with MATLAB Builder for Excel”

6-7

A

Producing a COM Object
from MATLAB

Overview of Internal Processes
(p. A-2)

High-level description of internal
processes.

Component Registration (p. A-5) Describes the registration process
for MATLAB Builder for Excel
components.

Calling Conventions (p. A-11) Calling conventions and M-file
mappings.

A Producing a COM Object from MATLAB

Overview of Internal Processes
MATLAB Builder for Excel lets you pass Microsoft Excel worksheet values
to a compiled MATLAB model via VBA, and return model output to a cell
or range of cells in the worksheet.

Each Excel Builder component is built as a stand-alone COM object. Each
MATLAB function included in a given component appears as a method of
the created COM class. The resulting call syntax from VB is systematically
mapped to the syntax of the original MATLAB. This mapping provides a
bridge from MATLAB, where the functions are created, to VB, where the
functions are ultimately called.

The following conceptual diagram illustrates the process:

A-2

Overview of Internal Processes

The process of creating an Excel Builder component is completely automatic
from a user point of view. You specify a list of M-files to process and a few
additional pieces of information, such as the component name, the class
names, and the version number. The build process involves the following
steps:

1 “Code Generation” on page A-3

2 “Create Interface Definitions” on page A-3

3 “C++ Compilation” on page A-4

4 “Linking and Resource Binding” on page A-4

5 “Component Registration” on page A-4

Code Generation
The first step in the build process generates all source code and other
supporting files needed to create the component. It also creates the main
source file (mycomponent_dll.cpp) containing the implementation of each
exported function of the DLL. The compiler additionally produces an Interface
Description Language (IDL) file (mycomponent_idl.idl), containing the
specifications for the component’s type library, interface, and class, with
associated GUIDs. (GUID is an acronym for Globally Unique Identifier, a
128-bit integer guaranteed always to be unique.)

Created next are the C++ class definition and implementation files
(myclass_com.hpp and myclass_com.cpp). In addition to these source
files, the compiler generates a DLL exports file (mycomponent.def), a
resource script (mycomponent.rc), and a Component Technology File
(mycomponent.ctf). See the MATLAB Compiler documentation for a
discussion of ctf files.

Create Interface Definitions
The second step of the build process invokes the IDL compiler on the IDL file
generated in step 1 (mycomponent_idl.idl), creating the interface header
file (mycomponent_idl.h), the interface GUID file (mycomponent_idl_i.c),
and the component type library file (mycomponent_idl.tlb). The interface
header file contains type definitions and function declarations based on the

A-3

A Producing a COM Object from MATLAB

interface definition in the IDL file. The interface GUID file contains the
definitions of the GUIDs from all interfaces in the IDL file. The component
type library file contains a binary representation of all types and objects
exposed by the component.

C++ Compilation
The third step compiles all C/C++ source files generated in steps 1 and
2 into object code. One additional file containing a set of C++ template
classes (mclcomclass.h) is included at this point. This file contains template
implementations of all necessary COM base classes, as well as error handling
and registration code.

Linking and Resource Binding
The fourth step produces the finished DLL for the component. This step
invokes the linker on the object files generated in step 3 and the necessary
MATLAB libraries to produce a DLL component (mycomponent_1_0.dll). The
resource compiler is then invoked on the DLL, along with the resource script
generated in step 1, to bind the type library file generated in step 2 into the
completed DLL.

Component Registration
The final build step registers the DLL on the system, as described in
“Component Registration” on page A-5.

A-4

Component Registration

Component Registration
When Excel Builder creates a component, it automatically generates a binary
file called a type library. As a final step of the build, this file is bound with the
resulting DLL as a resource.

When programming with Excel components you might need details about
a component. You can use componentinfo, which is a MATLAB function,
to query the system registry for details about any installed Excel Builder
component.

Obtaining Registry Information
When programming with COM components you might need details about
a component. You can use componentinfo, which is a MATLAB function,
to query the system registry for details about any installed Excel Builder
component.

Query the Register for Information About a Component

This example queries the registry for a component named mycomponent and
a version of 1.0. This component has four methods: mysum, randvectors,
getdates, and myprimes, two properties: m and n, and one event: myevent.

Info = componentinfo('mycomponent', 1, 0)

Info =

Name: 'mycomponent'
TypeLib: 'mycomponent 1.0 Type Library'

LIBID: '{3A14AB34-44BE-11D5-B155-00D0B7BA7544}'
MajorRev: 1
MinorRev: 0
FileName: 'D:\Work\ mycomponent\distrib\mycomponent_1_0.dll'
Interfaces: [1x1 struct]
CoClasses: [1x1 struct]

Info.Interfaces

ans =

A-5

A Producing a COM Object from MATLAB

Name: 'Imyclass'
IID: '{3A14AB36-44BE-11D5-B155-00D0B7BA7544}'

Info.CoClasses

ans =

Name: 'myclass'
CLSID: '{3A14AB35-44BE-11D5-B155-00D0B7BA7544}'
ProgID: 'mycomponent.myclass.1_0'

VerIndProgID: 'mycomponent.myclass'
InprocServer32:'D:\Work\mycomponent\distrib\mycomponent_1_0.dll'

Methods: [1x4 struct]
Properties: {'m', 'n'}

Events: [1x1 struct]

Info.CoClasses.Events.M

ans =

function myevent(x, y)

Info.CoClasses.Methods

ans =

1x4 struct array with fields:
IDL
M
C
VB

Info.CoClasses.Methods.M

ans =

function [y] = mysum(varargin)

ans =

A-6

Component Registration

function [varargout] = randvectors()

ans =

function [x] = getdates(n, inc)

ans =

function [p] = myprimes(n)

The returned structure contains fields corresponding to the most important
information from the registry and type library for the component.

Self-Registering Components
Excel Builder components are all self registering. A self-registering component
contains all the necessary code to add or remove a full description of itself to
or from the system registry. The mwregsvr utility, distributed with the MCR,
registers self-registering DLLs. For example, to register a component called
mycomponent_1_0.dll, issue this command at the DOS command prompt.

mwregsvr mycomponent_1_0.dll

When mwregsvr completes the registration process, it displays a message
indicating success or failure. Similarly, the command

mwregsvr /u mycomponent_1_0.dll

unregisters the component.

An Excel Builder component installed onto a particular machine must be
registered with mwregsvr. If you move a component into a different directory
on the same machine, you must repeat the registration process. When
deleting a component from a specific machine, first unregister it to ensure
that the registry does not retain erroneous information.

A-7

A Producing a COM Object from MATLAB

Note The mwregsvr utility invokes a process that is similar to regsvr32.exe,
except that mwregsvr does not require interaction with a user at the console.
The regsvr32.exe process belongs to the Windows OS and is used to register
dynamic link libraries and ActiveX controls in the registry. This program is
important for the stable and secure running of your computer and should not
be terminated. You can use regsvr32.exe as an alternative to mwregsvr to
register your library.

Globally Unique Identifier (GUID)
Information is stored in the registry as keys with one or more associated
named values. The keys themselves have values of primarily two types:
readable strings and GUIDs. (GUID is an acronym for Globally Unique
Identifier, which is a 128-bit integer guaranteed always to be unique.)

Excel Builder automatically generates GUIDs for COM classes, interfaces,
and type libraries that are defined within a component at build time, and
codes these keys into the component’s self-registration code.

The interface to the system registry is directory based. COM-related
information is stored under a top-level key called HKEY_CLASSES_ROOT. Under
HKEY_CLASSES_ROOT are several other keys under which Excel Builder writes
component information. See the following table for a list of the keys and
their definitions.

Key Definition

HKEY_CLASSES_ROOT\CLSID Information about COM classes on the system.
Each component creates a new key under
HKEY_CLASSES_ROOT\CLSID for each of its COM
classes. The key created has a value of the GUID
that has been assigned the class and contains
several subkeys with information about the class.

A-8

Component Registration

(Continued)

Key Definition

HKEY_CLASSES_ROOT\Interface Information about COM interfaces on the system.
Each component creates a new key under
HKEY_CLASSES_ROOT\Interface for each interface
it defines. This key has the value of the GUID
assigned to the interface and contains subkeys
with information about the interface.

HKEY_CLASSES_ROOT\TypeLib Information about type libraries on the system.
Each component creates a key for its type library
with the value of the GUID assigned to it. Under
this key a new key is created for each version
of the type library. Therefore, new versions of
type libraries with the same name reuse the
original GUID but create a new subkey for the
new version.

HKEY_CLASSES_ROOT\<ProgID>,
HKEY_CLASSES_ROOT\<VerIndProgID>

These two keys are created for the
component’s Program ID and Version
Independent Program ID. These keys
are constructed from strings of the form
<component-name>.<class-name>
and
<component-name>.<class-name>
<version-number>
These keys are useful for creating a class instance
from the component and class names instead
of the GUIDs.

Versioning
MATLAB Builder for Excel components support a simple versioning
mechanism designed to make building and deploying multiple versions of the
same component easy to implement. The version number of a component
appears as part of the DLL name, as well as part of the version-dependent ID
in the system registry.

A-9

A Producing a COM Object from MATLAB

When a component is created, you can specify a version number (default =
1.0). During the development of a specific version of a component, the version
number should be kept constant. When this is done, the MATLAB Compiler,
in certain cases, reuses type library, class, and interface GUIDs for each
subsequent build of the component. This avoids the creation of an excessive
number of registry keys for the same component during multiple builds, as
occurs if new GUIDs are generated for each build.

Note When a new version number is introduced, the MATLAB Compiler
generates new class and interface GUIDs so that the system recognizes them
as distinct from previous versions, even if the class name is the same.

Therefore, once you deploy a built component, use a new version number for
any changes made to the component. This ensures that after you deploy the
new component, it is easy to manage the two versions.

The MATLAB Compiler implements the versioning rules for a specific
component name, class name, and version number by querying the system
registry for an existing component with the same name:

• If an existing component has the same version, it uses the GUID of the
existing component’s type library. If the name of the new class matches the
previous version, it reuses the class and interface GUIDs. If the class names
do not match, it generates new GUIDs for the new class and interface.

• If it finds an existing component with a different version, it uses the
existing type library GUID and creates a new subkey for the new version
number. It generates new GUIDs for the new class and interface.

• If it does not find an existing component of the specified name, it generates
new GUIDs for the component’s type library, class, and interface.

A-10

Calling Conventions

Calling Conventions
This section describes the calling conventions for MATLAB Builder for Excel
components, including mappings from the original M-functions to VBA. A
function call originating from an Excel worksheet is routed from a VBA
function into a compiled M-function, as shown in the following conceptual
illustration:

A-11

A Producing a COM Object from MATLAB

Producing a COM Class
Producing a COM class requires the generation of a class definition file in
Interface Description Language (IDL) as well as the associated C++ class
definition/implementation files. (See the Microsoft COM documentation for a
complete discussion of IDL and C++ coding rules for building COM objects.)
The builder automatically produces the necessary IDL and C/C++ code to
build each COM class in the component. This process is generally transparent
to the user.

As a final step, Excel Builder produces a VBA function wrapper for each
method, used to implement an Excel formula function. Formula functions are
useful when calling a method that returns a single scalar value with one
or more inputs. Use a general VBA subroutine when calling a method that
returns array data or multiple outputs.

IDL Mapping
The most generic MATLAB M-function is

function [Y1, Y2, ..., varargout] = foo(X1, X2, ..., varargin)

This function maps directly to the following IDL signature:

HRESULT foo([in] long nargout,
[in,out] VARIANT* Y1,
[in,out] VARIANT* Y2,
.
.
.
[in,out] VARIANT* varargout,
[in] VARIANT X1,
[in] VARIANT X2,
.
.
.
[in] VARIANT varargin);

This IDL function definition is generated by producing a function with the
same name as the original M-function and an argument list containing all
inputs and outputs of the original plus one additional parameter, nargout.

A-12

Calling Conventions

(nargout is not produced if you compile an M-function containing no outputs.)
When present, the nargout parameter is an [in] parameter of type long.
It is always the first argument in the list. This parameter allows correct
passage of the MATLAB nargout parameter to the compiled M-code.
Following the nargout parameter, the outputs are listed in the order they
appear on the left side of the MATLAB function, and are tagged as [in,out],
meaning that they are passed in both directions. The function inputs are
listed next, appearing in the same order as they do on the right side of the
original function. All inputs are tagged as [in] parameters. When present,
the optional varargin/varargout parameters are always listed as the last
input parameters and the last output parameters. All parameters other than
nargout are passed as COM VARIANT types. “Data Conversion Rules” on
page B-2 lists the rules for conversion between MATLAB arrays and COM
VARIANTs.

Visual Basic Mapping
The Visual Basic mapping to the IDL signature shown in “IDL Mapping”
on page A-12 is

Sub foo(nargout As Long, _
Y1 As Variant, _
Y2 As Variant, _
.
.
.
varargout As Variant, _
X1 As Variant, _
X2 As Varaint, _
.
.
.
varargin As Variant)

(See “Programming with COM Components Created by MATLAB Builder for
.NET” for mappings to other languages, such as C++.) Visual Basic provides
native support for COM VARIANTs with the Variant type, as well as implicit
conversions for all Visual Basic basic types to and from Variants. In general,
arrays/scalars of any Visual Basic basic type, as well as arrays/scalars of
Variant types, can be passed as arguments.

A-13

A Producing a COM Object from MATLAB

Excel Builder components also provide direct support for the Excel Range
object, used by VBA to represent a range of cells in an Excel worksheet. See
the VBA documentation included with Microsoft Excel for more information
on VBA data types and Excel Range manipulation.

MATLAB Compiler Output
Excel Builder generates a default Visual Basic function wrapper for each class
method with the following format:

Function foo(Optional X1 As Variant, _
Optional X2 As Variant, _
.
.
.
Optional varargin1 As Variant, _
Optional varargin2 As Variant, _
.
.
.
Optional vararginN As Variant) _
As Variant

Dim Y1, Y2, ..., varargout As Variant
Dim varargin As Variant
.
.
.

(other declarations)
.

(function body)
.
.
.

foo = Y1
.
.
.

(error handling code)
.
.

A-14

Calling Conventions

.
End Function

By default, the generated formula function contains an argument list with all
the inputs to the method call and a return value corresponding to the first
output parameter. The argument list includes each explicit input parameter.
If the optional varargin parameter is present in the original MATLAB
function, additional arguments varargin1, varargin2,...,vararginn are
generated, where n is a number chosen by the builder. The number n is chosen
so that the total number of inputs is less than or equal to 32. This function
generally includes a declaration for each output parameter as type Variant. If
the original MATLAB function contains a varargin, a variable is declared of
type Variant to pass collectively the varargin1,...,vararginn parameters
in the form of a Variant array. The main function body contains code for

• Packing varargin parameters if available

• Creating the necessary class instance

• Calling the target method

• Error handling

A-15

A Producing a COM Object from MATLAB

A-16

B

Data Conversion

Data Conversion Rules (p. B-2) Describes the process of converting
data between MATLAB and COM
variants.

Array Formatting Flags (p. B-12) Describes the flags that control the
formatting of data

Data Conversion Flags (p. B-14) Describes the flags that control the
conversion of data

B Data Conversion

Data Conversion Rules
This topic describes the data conversion rules for MATLAB Builder for Excel
components. These components are dual interface COM objects that support
data types compatible with Automation.

Note Automation (formerly called OLE Automation) is a technology that
allows software packages to expose their unique features to scripting tools
and other applications. Automation uses the Component Object Model (COM),
but may be implemented independently from other OLE features, such as
in-place activation.

When a method is invoked on an Excel Builder component, the input
parameters are converted to MATLAB internal array format and passed to the
compiled MATLAB function. When the function exits, the output parameters
are converted from MATLAB internal array format to COM Automation types.

The COM client passes all input and output arguments in the compiled
MATLAB functions as type VARIANT. The COM VARIANT type is a union of
several simple data types. A type VARIANT variable can store a variable of any
of the simple types, as well as arrays of any of these values.

The Win32 Application Program Interface (API) provides many functions for
creating and manipulating VARIANTs in C/C++, and Visual Basic provides
native language support for this type.

Note This discussion of data refers to both VARIANT and Variant data types.
VARIANT is the C++ name and Variant is the corresponding data type in
Visual Basic.

See the Visual Studio documentation for definitions and API support for COM
VARIANTs. VARIANT variables are self describing and store their type code
as an internal field of the structure.

The following table lists the VARIANT type codes supported by Excel Builder
components.

B-2

Data Conversion Rules

VARIANT Type Codes Supported

VARIANT Type Code
(C/C++) C/C++ Type

Variant
Type Code
(Visual Basic)

Visual
Basic
Type Definition

VT_EMPTY vbEmpty Uninitialized
VARIANT

VT_I1 char Signed one-byte
character

VT_UI1 unsigned char vbByte Byte Unsigned one-byte
character

VT_I2 short vbInteger Integer Signed two-byte
integer

VT_UI2 unsigned
short

— — Unsigned two-byte
integer

VT_I4 long vbLong Long Signed four-byte
integer

VT_UI4 unsigned long — — Unsigned four-byte
integer

VT_R4 float vbSingle Single IEEE four-byte
floating-point value

VT_R8 double vbDouble Double IEEE eight-byte
floating-point value

VT_CY CY+ vbCurrency Currency Currency value
(64-bit integer, scaled
by 10,000)

VT_BSTR BSTR+ vbString String String value

VT_ERROR SCODE+ vbError — A HRESULT (Signed
four-byte integer
representing a COM
error code)

B-3

B Data Conversion

VARIANT Type Codes Supported (Continued)

VARIANT Type Code
(C/C++) C/C++ Type

Variant
Type Code
(Visual Basic)

Visual
Basic
Type Definition

VT_DATE DATE+ vbDate Date Eight-byte floating
point value
representing date
and time

VT_INT int — — Signed integer;
equivalent to type
int

VT_UINT unsigned int — — Unsigned integer;
equivalent to type
unsigned int

VT_DECIMAL DECIMAL+ vbDecimal — 96-bit (12-byte)
unsigned integer,
scaled by a variable
power of 10

VT_BOOL VARIANT_BOOL+ vbBoolean Boolean Two-byte Boolean
value (0xFFFF =
True; 0x0000 = False)

VT_DISPATCH IDispatch* vbObject Object IDispatch* pointer
to an object

VT_VARIANT VARIANT+ vbVariant Variant VARIANT (can only be
specified if combined
with VT_BYREF or
VT_ARRAY)

<anything>|VT_ARRAY — — — Bitwise combine
VT_ARRAY with any
basic type to declare
as an array

B-4

Data Conversion Rules

VARIANT Type Codes Supported (Continued)

VARIANT Type Code
(C/C++) C/C++ Type

Variant
Type Code
(Visual Basic)

Visual
Basic
Type Definition

<anything>|VT_BYREF — — — Bitwise combine
VT_BYREF with any
basic type to declare
as a reference to a
value

+ Denotes Windows-specific type. Not part of standard C/C++.

The following table lists the rules for converting from MATLAB to COM.

MATLAB to COM VARIANT Conversion Rules

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

cell A 1-by-1 cell array
converts to a single
VARIANT with a type
conforming to the
conversion rule for the
MATLAB data type of
the cell contents.

A multidimensional
cell array converts
to a VARIANT of type
VT_VARIANT|VT_ARRAY
with the type of
each array member
conforming to the
conversion rule for the
MATLAB data type of
the corresponding cell.

structure VT_DISPATCH VT_DISPATCH A MATLAB struct
array is converted to
an MWStruct object.
(See “Class MWStruct”
on page C-16.) This
object is passed as a
VT_DISPATCH type.

B-5

B Data Conversion

MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

char A 1-by-1 char matrix
converts to a VARIANT
of type VT_BSTR with
string length = 1.

A 1-by-L char matrix is
assumed to represent
a string of length Lin
MATLAB. This case
converts to a VARIANT
of type VT_BSTR with a
string length = L. char
matrices of more than
one row, or of a higher
dimensionality convert
to a VARIANT of type
VT_BSTR|VT_ARRAY.
Each string in the
converted array
is of length 1 and
corresponds to each
character in the
original matrix.

Arrays of strings are
not supported as char
matrices. To pass an
array of strings, use
a cell array of 1-by-L
char matrices.

sparse VT_DISPAATCH VT_DISPATCH A MATLAB sparse
array is converted to
an MWSparse object.
(See “Class MWSparse”
on page C-27.) This
object is passed as a
VT_DISPATCH type.

B-6

Data Conversion Rules

MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

double A real 1-by-1 double
matrix converts to
a VARIANT of type
VT_R8. A complex
1-by-1 double matrix
converts to a VARIANT
of type VT_DISPATCH.

A real
multidimensional
double matrix converts
to a VARIANT of type
VT_R8|VT_ARRAY.
A complex
multidimensional
double matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class. (See “Class
MWComplex” on page
C-25.)

single A real 1-by-1 single
matrix converts to a
VARIANT of type VT_R4.
A complex 1-by-1 single
matrix converts to
a VARIANT of type
VT_DISPATCH.

A real
multidimensional
single matrix converts
to a VARIANT of type
VT_R4|VT_ARRAY.
A complex
multidimensional
single matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class. (See “Class
MWComplex” on page
C-25.)

int8 A real 1-by-1 int8
matrix converts to a
VARIANT of type VT_I1.
A complex 1-by-1 int8
matrix converts to
a VARIANT of type
VT_DISPATCH.

A real
multidimensional int8
matrix converts to
a VARIANT of type
VT_I1|VT_ARRAY.
A complex
multidimensional int8
matrix converts to
a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class. (See “Class
MWComplex” on page
C-25.)

B-7

B Data Conversion

MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

uint8 A real 1-by-1 uint8
matrix converts to
a VARIANT of type
VT_UI1. A complex
1-by-1 uint8 matrix
converts to a VARIANT
of type VT_DISPATCH.

A real
multidimensional
uint8 matrix converts
to a VARIANT of type
VT_UI1|VT_ARRAY.A
complex
multidimensional
uint8 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class. (See “Class
MWComplex” on page
C-25.)

int16 A real 1-by-1 int16
matrix converts to a
VARIANT of type VT_I2.
A complex 1-by-1 int16
matrix converts to
a VARIANT of type
VT_DISPATCH.

A real
multidimensional
int16 matrix converts
to a VARIANT of type
VT_I2|VT_ARRAY.
A complex
multidimensional
int16 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class. (See “Class
MWComplex” on page
C-25.)

uint16 A real 1-by-1 uint16
matrix converts to
a VARIANT of type
VT_UI2. A complex
1-by-1 uint16 matrix
converts to a VARIANT
of type VT_DISPATCH.

A real
multidimensional
uint16 matrix converts
to a VARIANT of type
VT_UI2|VT_ARRAY.
A complex
multidimensional
uint16 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class. (See “Class
MWComplex” on page
C-25.)

B-8

Data Conversion Rules

MATLAB to COM VARIANT Conversion Rules (Continued)

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

int32 A 1-by-1 int32 matrix
converts to a VARIANT of
type VT_I4. A complex
1-by-1 int32 matrix
converts to a VARIANT
of type VT_DISPATCH.

A multidimensional
int32 matrix converts
to a VARIANT of type
VT_I4|VT_ARRAY.
A complex
multidimensional
int32 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class. (See “Class
MWComplex” on page
C-25.)

uint32 A 1-by-1 uint32 matrix
converts to a VARIANT of
type VT_UI4. A complex
1-by-1 uint32 matrix
converts to a VARIANT
of type VT_DISPATCH.

A multidimensional
uint32 matrix converts
to a VARIANT of type
VT_UI4|VT_ARRAY.
A complex
multidimensional
uint32 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class. (See “Class
MWComplex” on page
C-25.)

Function handle VT_EMPTY VT_EMPTY Not supported

Java class VT_EMPTY VT_EMPTY Not supported

User class VT_EMPTY VT_EMPTY Not supported

logical VT_Bool VT_Bool|VT_ARRAY

The following table lists the rules for conversion from COM to MATLAB.

B-9

B Data Conversion

COM VARIANT to MATLAB Conversion Rules

VARIANT Type

MATLAB Data Type
(scalar or array
data) Comments

VT_EMPTY N/A Empty array created.

VT_I1 int8

VT_UI1 uint8

VT_I2 int16

VT_UI2 uint16

VT_I4 int32

VT_UI4 uint32

VT_R4 single

VT_R8 double

VT_CY double

VT_BSTR char A VARIANT of type VT_BSTR converts to a
1-by-L MATLAB char array, where L =
the length of the string to be converted.
A VARIANT of type VT_BSTR|VT_ARRAY
converts to a MATLAB cell array of 1-by-L
char arrays.

VT_ERROR int32

VT_DATE double 1. VARIANT dates are stored as doubles
starting at midnight Dec. 31, 1899.
MATLAB dates are stored as doubles
starting at 0/0/00 00:00:00. Therefore, a
VARIANT date of 0.0 maps to a MATLAB
numeric date of 693960.0. VARIANT
dates are converted to MATLAB double
types and incremented by 693960.0.
2. VARIANT dates can be optionally
converted to strings. See “Data Conversion
Flags” on page B-14 for more information
on type coercion.

B-10

Data Conversion Rules

COM VARIANT to MATLAB Conversion Rules (Continued)

VARIANT Type

MATLAB Data Type
(scalar or array
data) Comments

VT_INT int32

VT_UINT uint32

VT_DECIMAL double

VT_BOOL logical

VT_DISPATCH (varies) IDispatch* pointers are treated within
the context of what they point to. Objects
must be supported types with known data
extraction and conversion rules, or expose
a generic Value property that points to a
single VARIANT type. Data extracted from
an object is converted based upon the rules
for the particular VARIANT obtained.

Currently, support exists for Excel Range
objects as well as Excel Builder types
MWStruct, MWComplex, MWSparse, and
MWArg. See “Utility Library Classes” on
page C-3 for information on Excel Builder
types.

<anything>|VT_BYREF (varies) Pointers to any of the basic types are
processed according to the rules for what
they point to. The resulting MATLAB
array contains a deep copy of the values.

<anything>|VT_ARRAY (varies) Multidimensional VARIANT arrays convert
to multidimensional MATLAB arrays, each
element converted according to the rules for
the basic types. Multidimensional VARIANT
arrays of type VT_VARIANT|VT_ARRAY
convert to multidimensional cell arrays,
each cell converted according to the rules
for that specific type.

B-11

B Data Conversion

Array Formatting Flags
Excel Builder components have flags that control how array data is formatted
in both directions. Generally, you should develop client code that matches the
intended inputs and outputs of the MATLAB functions with the corresponding
methods on the compiled COM objects, in accordance with the rules listed
in MATLAB to COM VARIANT Conversion Rules on page B-5 and COM
VARIANT to MATLAB Conversion Rules on page B-10. In some cases this is
not possible, for example, when existing MATLAB code is used in conjunction
with a third-party product like Excel.

The following table shows the array formatting flags.

Array Formatting Flags

Flag Description

InputArrayFormat Defines the array formatting rule used on input arrays.
An input array is a VARIANT array, created
by the client, sent as an input parameter
to a method call on a compiled COM object.
Valid values for this flag are mwArrayFormatAsIs,
mwArrayFormatMatrix, and mwArrayFormatCell.

mwArrayFormatAsIs passes the array unchanged.

mwArrayFormatMatrix (default) formats all arrays
as matrices. When the input VARIANT is of type
VT_ARRAY| type, where type is any numeric type,
this flag has no effect. When the input VARIANT is of
type VT_VARIANT|VT_ARRAY, VARIANTs in the array are
examined. If they are single-valued and homogeneous
in type, a MATLAB matrix of the appropriate type is
produced instead of a cell array.

mwArrayFormatCell interprets all arrays as MATLAB
cell arrays.

B-12

Array Formatting Flags

Array Formatting Flags (Continued)

Flag Description

InputArrayIndFlag Sets the input array indirection level used with the
InputArrayFormat flag (applicable only to nested arrays,
i.e., VARIANT arrays of VARIANTs, which themselves are
arrays). The default value for this flag is zero, which
applies the InputArrayFormat flag to the outermost
array. When this flag is greater than zero, e.g., equal
to N, the formatting rule attempts to apply itself to the
Nth level of nesting.

OutputArrayFormat Defines the array formatting rule used on output arrays.
An output array is a MATLAB array, created by the
compiled COM object, sent as an output parameter
from a method call to the client. The values for this
flag, mwArrayFormatAsIs, mwArrayFormatMatrix, and
mwArrayFormatCell, cause the same behavior as the
corresponding InputArrayFormat flag values.

OutputArrayIndFlag (Applies to nested cell arrays only.) Output array
indirection level used with the OutputArrayFormat flag.
This flag works exactly like InputArrayIndFlag.

AutoResizeOutput (Applies to Excel ranges only.) When the target output
from a method call is a range of cells in an Excel
worksheet and the output array size and shape is not
known at the time of the call, set this flag to True to
resize each Excel range to fit the output array.

TransposeOutput Set this flag to True to transpose the output arguments.
Useful when calling an Excel Builder component from
Excel where the MATLAB function returns outputs as
row vectors, and you want the data in columns.

B-13

B Data Conversion

Data Conversion Flags
Excel Builder components contain the following flags to control the conversion
of certain VARIANT types to MATLAB types:

• “CoerceNumericToType” on page B-14

• “InputDateFormat” on page B-15

• “OutputAsDate As Boolean” on page B-16

• “DateBias As Long” on page B-16

CoerceNumericToType
This flag tells the data converter to convert all numeric VARIANT data to one
specific MATLAB type.

VARIANT type codes affected by this flag are

VT_I1

VT_UI1

VT_I2

VT_UI2

VT_I4

VT_UI4

VT_R4

VT_R8

VT_CY

VT_DECIMAL

VT_INT

B-14

Data Conversion Flags

VT_UINT

VT_ERROR

VT_BOOL

VT_DATE

Valid values for this flag are

mwTypeDefault

mwTypeChar

mwTypeDouble

mwTypeSingle

mwTypeLogical

mwTypeInt8

mwTypeUint8

mwTypeInt16

mwTypeUint16

mwTypeInt32

mwTypeUint32

The default for this flag, mwTypeDefault, converts numeric data according to
the rules listed in “Data Conversion Rules” on page B-2.

InputDateFormat
This flag tells the data converter how to convert VARIANT dates to MATLAB
dates. Valid values for this flag are mwDateFormatNumeric (default) and
mwDateFormatString. The default converts VARIANT dates according

B-15

B Data Conversion

to the rule listed in VARIANT Type Codes Supported on page B-3. The
mwDateFormatString flag converts a VARIANT date to its string representation.
This flag only affects VARIANT type code VT_DATE.

OutputAsDate As Boolean
This flag instructs the data converter to process an output argument as a
date. By default, numeric dates that are output parameters from compiled
MATLAB functions are passed as Doubles that need to be decremented by
the COM date bias (693960) as well as coerced to COM dates. Set this flag to
True to convert all output values of type Double.

DateBias As Long
This flag sets the date bias for performing COM to MATLAB numeric date
conversions. The default value of this property is 693960, which represents
the difference between the COM Date type and MATLAB numeric dates.
This flag allows existing MATLAB code that already performs the increment
of numeric dates by 693960 to be used unchanged with Excel Builder
components. To process dates with such code, set this property to 0.

B-16

C

Utility Library

Referencing Utility Classes (p. C-2) How to reference the classes in your
programming environment.

Utility Library Classes (p. C-3) Describes the classes provided in the
Utility library.

Enumerations (p. C-32) Describes the sets of constants
provided with the library.

C Utility Library

Referencing Utility Classes
This section describes the MWComUtil library provided with MATLAB Builder
for Excel. This library is freely distributable and includes several functions
used in array processing, as well as type definitions used in data conversion.
This library is contained in the file mwcomutil.dll. It must be registered once
on each machine that uses Excel Builder components.

Register the MWComUtil library at the DOS command prompt with the
following command:

mwregsvr mwcomutil.dll

The MWComUtil library includes seven classes (see “Utility Library Classes” on
page C-3) and three enumerated types (see “Enumerations” on page C-32).
Before using these types, you must make explicit references to the MWComUtil
type libraries in the Visual Basic IDE. To do this, click Tools > References
from the main menu of the VB editor. The References dialog box appears
with a scrollable list of available type libraries. From this list, select
MWComUtil 7.4 Type Library and click OK.

C-2

Utility Library Classes

Utility Library Classes
The MATLAB Builder for Excel Utility library provides these classes:

• “Class MWUtil” on page C-3

• “Class MWFlags” on page C-10

• “Class MWStruct” on page C-16

• “Class MWField” on page C-24

• “Class MWComplex” on page C-25

• “Class MWSparse” on page C-27

• “Class MWArg” on page C-30

Class MWUtil
The MWUtil class contains a set of static utility methods used in array
processing and application initialization. This class is implemented internally
as a singleton (only one global instance of this class per instance of Excel). It
is most efficient to declare one variable of this type in global scope within each
module that uses it. The methods of MWUtil are

• “Sub MWInitApplication(pApp As Object)” on page C-3

• “Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])” on page C-5

• “Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean =
False], [pVar0], [pVar1], ..., [pVar31])” on page C-6

• “Sub MWDate2VariantDate(pVar)” on page C-8

The function prototypes use Visual Basic syntax.

Sub MWInitApplication(pApp As Object)
Initializes the library with the current instance of Excel.

C-3

C Utility Library

Parameters.

Argument Type Description

pApp Object A valid reference to
the current Excel
application

Return Value. None.

Remarks. This function must be called once for each session of Excel that
uses Excel Builder components. An error is generated if a method call is
made to a member class of any Excel Builder component, and the library has
not been initialized.

Example. This Visual Basic sample initializes the MWComUtil library with
the current instance of Excel. A global variable of type Object named MCLUtil
holds an instance of the MWUtil class, and another global variable of type
Boolean named bModuleInitialized stores the status of the initialization
process. The private subroutine InitModule() creates an instance of the
MWComUtil class and calls the MWInitApplication method with an argument
of Application. Once this function succeeds, all subsequent calls exit without
recreating the object.

Dim MCLUtil As Object
Dim bModuleInitialized As Boolean

Private Sub InitModule()
If Not bModuleInitialized Then

On Error GoTo Handle_Error
If MCLUtil Is Nothing Then

Set MCLUtil = CreateObject("MWComUtil.MWUtil")
End If
Call MCLUtil.MWInitApplication(Application)
bModuleInitialized = True
Exit Sub

Handle_Error:
bModuleInitialized = False

End If
End Sub

C-4

Utility Library Classes

Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])
Packs a variable length list of Variant arguments into a single Variant
array. This function is typically used for creating a varargin cell from a list
of separate inputs. Each input in the list is added to the array only if it is
nonempty and nonmissing. (In Visual Basic, a missing parameter is denoted
by a Variant type of vbError with a value of &H80020004.)

Parameters.

Argument Type Description

pVarArg Variant Receives the resulting
array

[Var0], [Var1], ... Variant Optional list of
Variants to pack
into the array. 0 to
32 arguments can be
passed.

Return Value. None.

Remarks. This function always frees the contents of pVarArg before
processing the list.

Example. This example uses MWPack in a formula function to produce a
varargin cell to pass as an input parameter to a method compiled from a
MATLAB function with the signature:

function y = mysum(varargin)
y = sum([varargin{:}]);

The function returns the sum of the elements in varargin. Assume that this
function is a method of a class named myclass that is included in a component
named mycomponent with a version of 1.0. The Visual Basic function allows
up to 10 inputs, and returns the result y. If an error occurs, the function
returns the error string. This function assumes that MWInitApplication
has been previously called.

Function mysum(Optional V0 As Variant, _
Optional V1 As Variant, _

C-5

C Utility Library

Optional V2 As Variant, _
Optional V3 As Variant, _
Optional V4 As Variant, _
Optional V5 As Variant, _
Optional V6 As Variant, _
Optional V7 As Variant, _
Optional V8 As Variant, _
Optional V9 As Variant) As Variant

Dim y As Variant
Dim varargin As Variant
Dim aClass As Object
Dim aUtil As Object

On Error Goto Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Set aUtil = CreateObject("MWComUtil.MWUtil")
Call aUtil.MWPack(varargin,V0,V1,V2,V3,V4,V5,V6,V7,V8,V9)
Call aClass.mysum(1, y, varargin)
mysum = y
Exit Function

Handle_Error:
mysum = Err.Description

End Function

Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As
Boolean = False], [pVar0], [pVar1], ..., [pVar31])
Unpacks an array of Variants into individual Variant arguments. This
function provides the reverse functionality of MWPack and is typically used to
process a varargout cell into individual Variants.

Parameters.

Argument Type Description

VarArg Variant Input array of Variants
to be processed

C-6

Utility Library Classes

Argument Type Description

nStartAt Long Optional starting
index (zero-based)
in the array to begin
processing. Default = 0.

bAutoResize Boolean Optional auto-resize
flag. If this flag is
True, any Excel range
output arguments
are resized to fit the
dimensions of the
Variant to be copied.
The resizing process is
applied relative to the
upper-left corner of the
supplied range. Default
= False.

[pVar0],[pVar1],
...

Variant Optional list of
Variants to receive the
array items contained
in VarArg. 0 to 32
arguments can be
passed.

Return Value. None.

Remarks. This function can process a Variant array in a single call or
through multiple calls using the nStartAt parameter.

Example. This example uses MWUnpack to process a varargout cell into
several Excel ranges, while auto-resizing each range. The varargout
parameter is supplied from a method that has been compiled from the
MATLAB function.

function varargout = randvectors
for i=1:nargout

varargout{i} = rand(i,1);
end

C-7

C Utility Library

This function produces a sequence of nargout random column vectors, with
the length of the ith vector equal to i. Assume that this function is included in
a class named myclass that is included in a component named mycomponent
with a version of 1.0. The Visual Basic subroutine takes no arguments and
places the results into Excel columns starting at A1, B1, C1, and D1. If an
error occurs, a message box displays the error text. This function assumes
that MWInitApplication has been previously called.

Sub GenVectors()
Dim aClass As Object
Dim aUtil As Object
Dim v As Variant
Dim R1 As Range
Dim R2 As Range
Dim R3 As Range
Dim R4 As Range
.
.
.
On Error GoTo Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Set aUtil = CreateObject("MWComUtil.MWUtil")
Set R1 = Range("A1")
Set R2 = Range("B1")
Set R3 = Range("C1")
Set R4 = Range("D1")
Call aClass.randvectors(4, v)
Call aUtil.MWUnpack(v,0,True,R1,R2,R3,R4)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Sub MWDate2VariantDate(pVar)
Converts output dates from MATLAB to Variant dates.

C-8

Utility Library Classes

Parameters.

Argument Type Description

pVar Variant Variant to be converted

Return Value. None.

Remarks. MATLAB handles dates as double-precision floating-point
numbers with 0.0 representing 0/0/00 00:00:00 (see “Data Conversion Rules”
on page B-2 for more information on conversion between MATLAB and
COM date values). By default, numeric dates that are output parameters
from compiled MATLAB functions are passed as Doubles that need to be
decremented by the COM date bias as well as coerced to COM dates. The
MWDate2VariantDate method performs this transformation and additionally
converts dates in string form to COM date types.

Example. This example uses MWDate2VariantDate to process numeric dates
returned from a method compiled from the following MATLAB function:

function x = getdates(n, inc)
y = now;
for i=1:n

x(i,1) = y + (i-1)*inc;
end

This function produces an n-length column vector of numeric values
representing dates starting from the current date and time with each element
incremented by inc days. Assume that this function is included in a class
named myclass that is included in a component named mycomponent with
a version of 1.0. The subroutine takes an Excel range and a Double as
inputs and places the generated dates into the supplied range. If an error
occurs, a message box displays the error text. This function assumes that
MWInitApplication has been previously called.

Sub GenDates(R As Range, inc As Double)
Dim aClass As Object
Dim aUtil As Object

On Error GoTo Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")

C-9

C Utility Library

Set aUtil = CreateObject("MWComUtil.MWUtil")
Call aClass.getdates(1, R, R.Rows.Count, inc)
Call aUtil.MWDate2VariantDate(R)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Class MWFlags
The MWFlags class contains a set of array formatting and data conversion
flags (see “Data Conversion Rules” on page B-2 for more information on
conversion between MATLAB and COM Automation types). All Excel Builder
components contain a reference to an MWFlags object that can modify data
conversion rules at the object level. This class contains these properties:

• “Property ArrayFormatFlags As MWArrayFormatFlags” on page C-10

• “Property DataConversionFlags As MWDataConversionFlags” on page
C-13

• “Sub Clone(ppFlags As MWFlags)” on page C-15

Property ArrayFormatFlags As MWArrayFormatFlags
The ArrayFormatFlags property controls array formatting (as a matrix
or a cell array) and the application of these rules to nested arrays. The
MWArrayFormatFlags class is a noncreatable class accessed through an
MWFlags class instance. This class contains these properties:

• “Property InputArrayFormat As mwArrayFormat” on page C-11

• “Property InputArrayIndFlag As Long” on page C-11

• “Property OutputArrayFormat As mwArrayFormat” on page C-12

• “Property OutputArrayIndFlag As Long” on page C-12

• “Property AutoResizeOutput As Boolean” on page C-13

• “Property TransposeOutput As Boolean” on page C-13

C-10

Utility Library Classes

Property InputArrayFormat As mwArrayFormat. This property of type
mwArrayFormat controls the formatting of arrays passed as input parameters
to Excel Builder class methods. The default value is mwArrayFormatMatrix.
The behaviors indicated by this flag are listed in the following table.

Array Formatting Rules for Input Arrays

Value Behavior

mwArrayFormatAsIs Converts arrays according to the
default conversion rules listed in
“Data Conversion Rules” on page
B-2.

mwArrayFormatCell Coerces all arrays into cell arrays.
Input scalar or numeric array
arguments are converted to cell
arrays with each cell containing a
scalar value for the respective index.

mwArrayFormatMatrix Coerces all arrays into matrices.
When an input argument is
encountered that is an array of
Variants (the default behavior is
to convert it to a cell array), the
data converter converts this array
to a matrix if each Variant is
single valued, and all elements are
homogeneous and of a numeric type.
If this conversion is not possible,
creates a cell array.

Property InputArrayIndFlag As Long. This property governs the level at
which to apply the rule set by the InputArrayFormat property for nested
arrays (an array of Variants is passed and each element of the array is an
array itself). It is not necessary to modify this flag for varargin parameters.
The data conversion code automatically increments the value of this flag by
1 for varargin cells, thus applying the InputArrayFormat flag to each cell
of a varargin parameter. The default value is 0.

C-11

C Utility Library

Property OutputArrayFormat As mwArrayFormat. This property of type
mwArrayFormat controls the formatting of arrays passed as output parameters
to Excel Builder class methods. The default value is mwArrayFormatAsIs. The
behaviors indicated by this flag are listed in the following table.

Array Formatting Rules for Output Arrays

Value Behavior

mwArrayFormatAsIs Converts arrays according to the
default conversion rules listed
in MATLAB to COM VARIANT
Conversion Rules on page B-5.

mwArrayFormatMatrix Coerces all arrays into matrices.
When an output cell array argument
is encountered (the default behavior
converts it to an array of Variants),
the data converter converts this
array to a Variant that contains a
simple numeric array if each cell is
single valued, and all elements are
homogeneous and of a numeric type.
If this conversion is not possible, an
array of Variants is created.

mwArrayFormatCell Coerces all output arrays into
arrays of Variants. Output scalar
or numeric array arguments are
converted to arrays of Variants,
each Variant containing a scalar
value for the respective index.

Property OutputArrayIndFlag As Long. This property is similar to the
InputArrayIndFalg property, as it governs the level at which to apply the
rule set by the OutputArrayFormat property for nested arrays. As with
the input case, this flag is automatically incremented by 1 for a varargout
parameter. The default value of this flag is 0.

C-12

Utility Library Classes

Property AutoResizeOutput As Boolean. This flag applies to Excel ranges
only. When the target output from a method call is a range of cells in an Excel
worksheet, and the output array size and shape is not known at the time of the
call, setting this flag to True instructs the data conversion code to resize each
Excel range to fit the output array. Resizing is applied relative to the upper
left corner of each supplied range. The default value for this flag is False.

Property TransposeOutput As Boolean. Setting this flag to True
transposes the output arguments. This flag is useful when processing an
output parameter from a method call on an Excel Builder component, where
the MATLAB function returns outputs as row vectors, and you desire to place
the data into columns. The default value for this flag is False.

Property DataConversionFlags As MWDataConversionFlags
The DataConversionFlags property controls how input variables are
processed when type coercion is needed. The MWDataConversionFlags class
is a noncreatable class accessed through an MWFlags class instance. This
class contains these properties:

• “Property CoerceNumericToType As mwDataType” on page C-13

• “Property InputDateFormat As mwDateFormat” on page C-13

• “PropertyOutputAsDate As Boolean” on page C-15

• “PropertyDateBias As Long” on page C-15

Property CoerceNumericToType As mwDataType. This property
converts all numeric input arguments to one specific MATLAB type. This
flag is useful is when variables maintained within the Visual Basic code
are different types, e.g., Long, Integer, etc., and all variables passed to
the compiled MATLAB code must be doubles. The default value for this
property is mwTypeDefault, which uses the default rules in COM VARIANT to
MATLAB Conversion Rules on page B-10.

Property InputDateFormat As mwDateFormat. This property converts
dates passed as input parameters to method calls on Excel Builder classes.
The default value is mwDateFormatNumeric. The behaviors indicated by this
flag are shown in the following table.

C-13

C Utility Library

Conversion Rules for Input Dates

Value Behavior

mwDateFormatNumeric Convert dates to numeric values as
indicated by the rule listed in COM
VARIANT to MATLAB Conversion
Rules on page B-10.

mwDateFormatString Convert input dates to strings.

Example. This example uses data conversion flags to reshape the output
from a method compiled from a MATLAB function that produces an output
vector of unknown length:

function p = myprimes(n)
if length(n)~=1, error('N must be a scalar'); end
if n < 2, p = zeros(1,0); return, end
p = 1:2:n;
q = length(p);
p(1) = 2;
for k = 3:2:sqrt(n)

if p((k+1)/2)
p(((k*k+1)/2):k:q) = 0;

end
end
p = (p(p>0));

This function produces a row vector of all the prime numbers from 0 to n.

Assume that this function is included in a class named myclass that is
included in a component named mycomponent with a version of 1.0. The
subroutine takes an Excel range and a Double as inputs, and places the
generated prime numbers into the supplied range. The MATLAB function
produces a row vector, although you want the output in column format. It also
produces an unknown number of outputs, and you do not want to truncate
any output.

To handle these issues, set the TransposeOutput flag and the
AutoResizeOutput flag to True. In previous examples, the Visual Basic
CreateObject function creates the necessary classes. This example uses an

C-14

Utility Library Classes

explicit type declaration for the aClass variable. As with previous examples,
this function assumes that MWInitApplication has been previously called.

Sub GenPrimes(R As Range, n As Double)
Dim aClass As mycomponent.myclass

On Error GoTo Handle_Error
Set aClass = New mycomponent.myclass
aClass.MWFlags.ArrayFormatFlags.AutoResizeOutput = True
aClass.MWFlags.ArrayFormatFlags.TransposeOutput = True
Call aClass.myprimes(1, R, n)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

PropertyOutputAsDate As Boolean. This property processes an output
argument as a date. By default, numeric dates that are output parameters
from compiled MATLAB functions are passed as Doubles that need to be
decremented by the COM date bias (693960) as well as coerced to COM dates.
Set this flag to True to convert all output values of type Double.

PropertyDateBias As Long. This property sets the date bias for performing
COM to MATLAB numeric date conversions. The default value of this
property is 693960, representing the difference between the COM Date type
and MATLAB numeric dates. This flag allows existing MATLAB code that
already performs the increment of numeric dates by 693960 to be used
unchanged with Excel Builder components. To process dates with such code,
set this property to 0.

Sub Clone(ppFlags As MWFlags)
Creates a copy of an MWFlags object.

C-15

C Utility Library

Parameters.

Argument Type Description

ppFlags MWFlags Reference to an
uninitialized MWFlags
object that receives the
copy

Return Value. None

Remarks. Clone allocates a new MWFlags object and creates a deep copy of
the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Class MWStruct
The MWStruct class passes or receives a Struct type to or from a compiled
class method. This class contains these properties/methods:

• “Sub Initialize([varDims], [varFieldNames])” on page C-16

• “Property Item([i0], [i1], ..., [i31]) As MWField” on page C-18

• “Property NumberOfFields As Long” on page C-21

• “Property NumberOfDims As Long” on page C-21

• “Property Dims As Variant” on page C-21

• “Property FieldNames As Variant” on page C-22

• “Sub Clone(ppStruct As MWStruct)” on page C-22

Sub Initialize([varDims], [varFieldNames])
Allocates a structure array with a specified number and size of dimensions
and a specified list of field names.

C-16

Utility Library Classes

Parameters.

Argument Type Description

varDims Variant Optional array of
dimensions

varFieldNames Variant Optional array of field
names

Return Value. None.

Remarks. When created, an MWStruct object has a dimensionality of 1-by-1
and no fields. The Initialize method dimensions the array and adds a set of
named fields to each element. Each time you call Initialize on the same
object, it is redimensioned. If you do not supply the varDims argument, the
existing number and size of the array’s dimensions unchanged. If you do not
supply the varFieldNames argument, the existing list of fields is not changed.
Calling Initialize with no arguments leaves the array unchanged.

Example. The following Visual Basic code illustrates use of the Initialize
method to dimension struct arrays:

Sub foo ()
Dim x As MWStruct
Dim y As MWStruct

On Error Goto Handle_Error
'Create 1X1 struct arrays with no fields for x, and y
Set x = new MWStruct
Set y = new MWStruct

'Initialize x to be 2X2 with fields "red", "green", and "blue"
Call x.Initialize(Array(2,2), Array("red", "green", "blue"))
'Initialize y to be 1X5 with fields "name" and "age"
Call y.Initialize(5, Array("name", "age"))

'Re-dimension x to be 3X3 with the same field names
Call x.Initialize(Array(3,3))

'Add a new field to y

C-17

C Utility Library

Call y.Initialize(, Array("name", "age", "salary"))

Exit Sub
Handle_Error:

MsgBox(Err.Description)
End Sub

Property Item([i0], [i1], ..., [i31]) As MWField
The Item property is the default property of the MWStruct class. This property
is used to set and get the value of a field at a particular index in the structure
array.

Parameters.

Argument Type Description

i0,i1, ..., i31 Variant Optional index
arguments. 0 to 32
index arguments can be
entered. To reference
an element of the array,
specify all indexes as
well as the field name.

Remarks. When accessing a named field through this property, you must
supply all dimensions of the requested field as well as the field name. This
property always returns a single field value, and generates a bad index error
if you provide an invalid or incomplete index list. Index arguments have
four basic formats:

C-18

Utility Library Classes

Field name only This format may be used only in the
case of a 1-by-1 structure array and
returns the named field’s value. For
example:

x("red") = 0.2
x("green") = 0.4
x("blue") = 0.6

In this example, the name of the
Item property was neglected. This is
possible since the Item property is
the default property of the MWStruct
class. In this case the two statements
are equivalent:

x.Item("red") = 0.2
x("red") = 0.2

Single index and field name This format accesses array elements
through a single subscripting
notation. A single numeric index n
followed by the field name returns
the named field on the nth array
element, navigating the array
linearly in column-major order.
For example, consider a 2-by-2 array
of structures with fields "red",
"green", and "blue" stored in a
variable x. These two statements
are equivalent:

y = x(2, "red")
y = x(2, 1, "red")

C-19

C Utility Library

All indices and field name This format accesses an array
element of a multidimensional
array by specifying n indices. These
statements access all four of the
elements of the array in the previous
example:

For I From 1 To 2
For J From 1 To 2

r(I, J) = x(I, J, "red")
g(I, J) = x(I, J, "green")
b(I, J) = x(I, J, "blue")

Next
Next

Array of indices and field name This format accesses an array
element by passing an array of
indices and a field name. The
following example rewrites the
previous example using an index
array:

Dim Index(1 To 2) As Integer

For I From 1 To 2
Index(1) = I
For J From 1 To 2

Index(2) = J
r(I, J) = x(Index, "red")
g(I, J) = x(Index, "green")
b(I, J) = x(Index, "blue")

Next
Next

With these four formats, the Item property provides a very flexible indexing
mechanism for structure arrays. Also note:

C-20

Utility Library Classes

• You can combine the last two indexing formats. Several index arguments
supplied in either scalar or array format are concatenated to form one
index set. The combining stops when the number of dimensions has been
reached. For example:

Dim Index1(1 To 2) As Integer
Dim Index2(1 To 2) As Integer

Index1(1) = 1
Index1(2) = 1
Index2(1) = 3
Index2(2) = 2
x(Index1, Index2, 2, "red") = 0.5

The last statement resolves to

x(1, 1, 3, 2, 2, "red") = 0.5

• The field name must be the last index in the list. The following statement
produces an error:

y = x("blue", 1, 2)

• Field names are case sensitive.

Property NumberOfFields As Long
The read-only NumberOfFields property returns the number of fields in the
structure array.

Property NumberOfDims As Long
The read-only NumberOfDims property returns the number of dimensions
in the structure array.

Property Dims As Variant
The read-only Dims property returns an array of length NumberOfDims that
contains the size of each dimension of the structure array.

C-21

C Utility Library

Property FieldNames As Variant
The read-only FieldNames property returns an array of length
NumberOfFields that contains the field names of the elements of the structure
array.

Example. The next Visual Basic code sample illustrates how to access a
two-dimensional structure array’s fields when the field names and dimension
sizes are not known in advance:

Sub foo ()
Dim x As MWStruct
Dim Dims as Variant
Dim FieldNames As Variant

On Error Goto Handle_Error
'
'... Call a method that returns an MWStruct in x
'
Dims = x.Dims
FieldNames = x.FieldNames
For I From 1 To Dims(1)

For J From 1 To Dims(2)
For K From 1 To x.NumberOfFields

y = x(I,J,FieldNames(K))
' ... Do something with y

Next
Next

Next
Exit Sub
Handle_Error:

MsgBox(Err.Description)
End Sub

Sub Clone(ppStruct As MWStruct)
Creates a copy of an MWStruct object.

C-22

Utility Library Classes

Parameters.

Argument Type Description

ppStruct MWStruct Reference to an
uninitialized MWStruct
object to receive the
copy

Return Value. None

Remarks. Clone allocates a new MWStruct object and creates a deep copy
of the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Example. The following Visual Basic example illustrates the difference
between assignment and Clone for MWStruct objects:

Sub foo ()
Dim x1 As MWStruct
Dim x2 As MWStruct
Dim x3 As MWStruct

On Error Goto Handle_Error
Set x1 = new MWStruct
x1("name") = "John Smith"
x1("age") = 35

'Set reference of x1 to x2
Set x2 = x1

'Create new object for x3 and copy contents of x1 into it
Call x1.Clone(x3)

'x2's "age" field is also modified 'x3's "age" field unchanged
x1("age") = 50

.

.

.
Exit Sub

Handle_Error:
MsgBox(Err.Description)

C-23

C Utility Library

End Sub

Class MWField
The MWField class holds a single field reference in an MWStruct object. This
class is noncreatable and contains these properties/methods:

• “Property Name As String” on page C-24

• “Property Value As Variant” on page C-24

• “Property MWFlags As MWFlags” on page C-24

• “Sub Clone(ppField As MWField)” on page C-24

Property Name As String
The name of the field (read only).

Property Value As Variant
Stores the field’s value (read/write). The Value property is the default
property of the MWField class. The value of a field can be any type that is
coercible to a Variant, as well as object types.

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular field. Each field in a
structure has its own MWFlags property. This property overrides the value of
any flags set on the object whose methods are called.

Sub Clone(ppField As MWField)
Creates a copy of an MWField object.

C-24

Utility Library Classes

Parameters.

Argument Type Description

ppField MWField Reference to an
uninitialized MWField
object to receive the
copy

Return Value. None.

Remarks. Clone allocates a new MWField object and creates a deep copy of
the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Class MWComplex
The MWComplex class passes or receives a complex numeric array into or from
a compiled class method. This class contains these properties/methods:

• “Property Real As Variant” on page C-25

• “Property Imag As Variant” on page C-25

• “Property MWFlags As MWFlags” on page C-26

• “Sub Clone(ppComplex As MWComplex)” on page C-27

Property Real As Variant
Stores the real part of a complex array (read/write). The Real property is the
default property of the MWComplex class. The value of this property can be any
type coercible to a Variant, as well as object types, with the restriction that
the underlying array must resolve to a numeric matrix (no cell data allowed).
Valid Visual Basic numeric types for complex arrays include Byte, Integer,
Long, Single, Double, Currency, and Variant/vbDecimal.

Property Imag As Variant
Stores the imaginary part of a complex array (read/write). The Imag property
is optional and can be Empty for a pure real array. If the Imag property is
nonempty and the size and type of the underlying array do not match the size

C-25

C Utility Library

and type of the Real property’s array, an error results when the object is
used in a method call.

Example. The following Visual Basic code creates a complex array with
the following entries:

x = [1+i 1+2i
2+i 2+2i]

Sub foo()
Dim x As MWComplex
Dim rval(1 To 2, 1 To 2) As Double
Dim ival(1 To 2, 1 To 2) As Double

On Error Goto Handle_Error
For I = 1 To 2

For J = 1 To 2
rval(I,J) = I
ival(I,J) = J

Next
Next
Set x = new MWComplex
x.Real = rval
x.Imag = ival

.

.

.
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular complex array. Each
MWComplex object has its own MWFlags property. This property overrides the
value of any flags set on the object whose methods are called.

C-26

Utility Library Classes

Sub Clone(ppComplex As MWComplex)
Creates a copy of an MWComplex object.

Parameters.

Argument Type Description

ppComplex MWComplex Reference to
an uninitialized
MWComplex object to
receive the copy

Return Value. None

Remarks. Clone allocates a new MWComplex object and creates a deep copy
of the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Class MWSparse
The MWSparse class passes or receives a two-dimensional sparse numeric array
into or from a compiled class method. This class has these properties/methods:

• “Property NumRows As Long” on page C-27

• “Property NumColumns As Long” on page C-28

• “Property RowIndex As Variant” on page C-28

• “Property ColumnIndex As Variant” on page C-28

• “Property Array As Variant” on page C-28

• “Property MWFlags As MWFlags” on page C-28

• “Sub Clone(ppSparse As MWSparse)” on page C-29

Property NumRows As Long
Stores the row dimension for the array. The value of NumRows must be
nonnegative. If the value is zero, the row index is taken from the maximum
of the values in the RowIndex array.

C-27

C Utility Library

Property NumColumns As Long
Stores the column dimension for the array. The value of NumColumns must be
nonnegative. If the value is 0, the row index is taken from the maximum of
the values in the ColumnIndex array.

Property RowIndex As Variant
Stores the array of row indices of the nonzero elements of the array. The value
of this property can be any type coercible to a Variant, as well as object types,
with the restriction that the underlying array must resolve to or be coercible
to a numeric matrix of type Long. If the value of NumRows is nonzero and any
row index is greater than NumRows, a bad-index error occurs. An error also
results if the number of elements in the RowIndex array does not match the
number of elements in the Array property’s underlying array.

Property ColumnIndex As Variant
Stores the array of column indices of the nonzero elements of the array. The
value of this property can be any type coercible to a Variant, as well as object
types, with the restriction that the underlying array must resolve to or be
coercible to a numeric matrix of type Long. If the value of NumColumns is
nonzero and any column index is greater than NumColumns, a bad-index error
occurs. An error also results if the number of elements in the ColumnIndex
array does not match the number of elements in the Array property’s
underlying array.

Property Array As Variant
Stores the nonzero array values of the sparse array. The value of this property
can be any type coercible to a Variant, as well as object types, with the
restriction that the underlying array must resolve to or be coercible to a
numeric matrix of type Double or Boolean.

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular sparse array. Each
MWSparse object has its own MWFlags property. This property overrides the
value of any flags set on the object whose methods are called.

C-28

Utility Library Classes

Sub Clone(ppSparse As MWSparse)
Creates a copy of an MWSparse object.

Parameters.

Argument Type Description

ppSparse MWSparse Reference to an
uninitialized MWSparse
object to receive the
copy

Return Value. None.

Remarks. Clone allocates a new MWSparse object and creates a deep copy
of the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Example. The following Visual Basic sample creates a 5-by-5 tridiagonal
sparse array with the following entries:

X = [2 -1 0 0 0
-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
0 0 0 -1 2]

Sub foo()
Dim x As MWSparse
Dim rows(1 To 13) As Long
Dim cols(1 To 13) As Long
Dim vals(1 To 13) As Double
Dim I As Long, K As Long

On Error GoTo Handle_Error
K = 1
For I = 1 To 4

rows(K) = I
cols(K) = I + 1

C-29

C Utility Library

vals(K) = -1
K = K + 1
rows(K) = I
cols(K) = I
vals(K) = 2
K = K + 1
rows(K) = I + 1
cols(K) = I
vals(K) = -1
K = K + 1

Next
rows(K) = 5
cols(K) = 5
vals(K) = 2
Set x = New MWSparse
x.NumRows = 5
x.NumColumns = 5
x.RowIndex = rows
x.ColumnIndex = cols
x.Array = vals

.

.

.
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Class MWArg
The MWArg class passes a generic argument into a compiled class method. This
class passes an argument for which the data conversion flags are changed for
that one argument. This class has these properties/methods:

• “Property Value As Variant” on page C-31

• “Property MWFlags As MWFlags” on page C-31

• “Sub Clone(ppArg As MWArg)” on page C-31

C-30

Utility Library Classes

Property Value As Variant
The Value property stores the actual argument to pass. Any type that can be
passed to a compiled method is valid for this property.

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular argument. Each MWArg
object has its own MWFlags property. This property overrides the value of any
flags set on the object whose methods are called.

Sub Clone(ppArg As MWArg)
Creates a copy of an MWArg object.

Parameters.

Argument Type Description

ppArg MWArg Reference to an
uninitialized MWArg
object to receive the
copy

Return Value. None.

Remarks. Clone allocates a new MWArg object and creates a deep copy of the
object’s contents. Call this function when a separate object is required instead
of a shared copy of an existing object reference.

C-31

C Utility Library

Enumerations
The MATLAB Builder for Excel Utility library provides three enumerations
(sets of constants):

• “Enum mwArrayFormat” on page C-32

• “Enum mwDataType” on page C-32

• “Enum mwDateFormat” on page C-33

Enum mwArrayFormat
The mwArrayFormat enumeration is a set of constants that denote an array
formatting rule for data conversion. The following table lists the members
of this enumeration.

mwArrayFormat Values

Constant Numeric Value Description

mwArrayFormatAsIs 0 Do not reformat the
array.

mwArrayFormatMatrix 1 Format the array as a
matrix.

mwArrayFormatCell 2 Format the array as a
cell array.

Enum mwDataType
The mwDataType enumeration is a set of constants that denote a MATLAB
numeric type. The following table lists the members of this enumeration.

mwDataType Values

Constant Numeric Value MATLAB Type

mwTypeDefault 0 N/A

mwTypeLogical 3 logical

mwTypeChar 4 char

C-32

Enumerations

mwDataType Values (Continued)

Constant Numeric Value MATLAB Type

mwTypeDouble 6 double

mwTypeSingle 7 single

mwTypeInt8 8 int8

mwTypeUint8 9 uint8

mwTypeInt16 10 int16

mwTypeUint16 11 uint16

mwTypeInt32 12 int32

mwTypeUint32 13 uint32

Enum mwDateFormat
The mwDateFormat enumeration is a set of constants that denote a formatting
rule for dates. The following table lists the members of this enumeration.

mwDateFormat Values

Constant Numeric Value Description

mwDateFormatNumeric 0 Format dates as
numeric values.

mwDateFormatString 1 Format dates as
strings.

C-33

C Utility Library

C-34

D

Troubleshooting

D Troubleshooting

This appendix provides a table showing errors you may encounter using
MATLAB Builder for Excel, probable causes for these errors, and suggested
solutions.

Note MATLAB Builder for Excel uses the MATLAB Compiler to generate
components. This means that you might see diagnostic messages from the
MATLAB Compiler. See the MATLAB Compiler documentation for more
information about those messages.

Excel Builder Errors and Suggested Solutions

Message Probable Cause Suggested Solution

MBUILD.BAT: Error: The
chosen compiler does
not support building COM
objects.

The chosen compiler
does not support
building COM objects.

Rerun mbuild -setup and choose a
supported compiler.

Error in
component_name.class_name:
Error getting data
conversion flags.

Usually caused by
mwcomutil.dll not
being registered.

Open a DOS window, change
directories to <matlab>\bin\win32
(<matlab> represents the
location of MATLAB on your
system), and run the command
mwregsvr mwcomutil.dll.

Error in VBAProject:
ActiveX component can't
create object.

• Project DLL is not
registered.

• An incompatible
MATLAB DLL exists
somewhere on the
system path.

If the DLL is not registered, open
a DOS window, change directories
to <projectdir>\distrib
(<projectdir> represents
the location of your project
files), and run the command:
mwregsvr <projectdll>.dll.

Error in VBAProject:
Automation error The
specified module could
not be found.

This usually occurs if
MATLAB is not on the
system path.

See
Required Locations to
Develop and Use Components on
page D-4
.

D-2

Troubleshooting

Excel Builder Errors and Suggested Solutions (Continued)

Message Probable Cause Suggested Solution

LoadLibrary
("component_name.dll")
failed - The specified
module could not be
found.

You may get this
error message while
registering the project
DLL from the DOS
prompt. This usually
occurs if MATLAB is not
on the system path.

See
Required Locations to
Develop and Use Components on
page D-4
.

Cannot recompile the M
file xxxx because it is
already in the library
libmmfile.mlib.

The name you have
chosen for your M-file
duplicates the name of
an M-file already in the
library of precompiled
M-files.

Rename the M-file, choosing a name
that does not duplicate the name of
an M-file already in the library of
precompiled M-files.

Arguments may only be
defaulted at the end of
an argument list.

You have modified the
VB script generated for
Excel Builder and have
not provided one or more
arguments used in the
modified script.

Provide a value for any argument
that requires an explicit value.
Arguments that accept defaults
appear at the end of the argument
list.

D-3

D Troubleshooting

Required Locations to Develop and Use Components

ComponentDevelopment Machine Target Machine

MCR Make sure that
matlabroot\bin\win32
appears on your system
path ahead of any other
MATLAB installations.
(matlabroot is your root
MATLAB directory.)

Verify that
mcr_root\ver\runtime\win32
appears on your system path.
(mcr_root is your root MCR
directory.)

CTF Verify that the CTF file is in the same directory as your
program’s executable file.

D-4

Troubleshooting

Excel Errors and Suggested Solutions

Message Probable Cause Suggested Solution

The Macros in this project
are disabled. Please refer
to the online help or
documentation of the host
application to determine
how to enable macros.
Note: Wording may vary
depending upon the version
of Excel you are running.

The macro security for Excel
is set to High.

Set Excel macro security to
Medium on the Security
Level tab. Click
Tools > Macro > Security.

Function Wizard Problems

Problem Probable Cause Suggested Solution

The Function Wizard Help
does not appear.

The Function Wizard Help
file (mlfunction.chm) is not
in the same directory as
the Function Wizard add-in
(mlfunction.xla).

Copy the Help file
(mlfunction.chm) into the
same directory as the add-in.

D-5

D Troubleshooting

D-6

E

Examples

Use this list to find examples in the documentation.

E Examples

Calling a MATLAB Function from Excel
“Magic Square Examples” on page 4-2

Using Multiple Files and Variable Arguments
“Multiple Files and Variable Arguments Example” on page 4-7

Creating a Comprehensive Excel Add-In: Spectral Analysis
“Spectral Analysis Example” on page 4-15

Querying the Registry
“Obtaining Registry Information” on page A-5

E-2

Index

IndexA
array formatting flags 3-14

C
capabilities A-2
class 1-6
class method

calling 3-6
Class MWFlags C-10
Class MWUtil C-3
class name 1-6
COM

defined 1-6
COM class

producing A-12
COM VARIANT B-2
command line interface 1-9
Compiler Output A-14
component information 2-5
component name 1-5
Component Object Model 1-6
componentinfo function 6-2
CreateObject function 3-6

D
data conversion flags 3-14
data conversion rules B-2

E
Enumeration

mwArrayFormat C-32
mwDataType C-32
mwDateFormat C-33

enumerations C-32
errors

Excel D-1 D-5
Excel Builder D-2

F
flags

array formatting 3-14
data conversion 3-14

function wizard
argument properties 5-12
component browser 5-5
function properties 5-8
function utilities 5-14
function viewer 5-5
purpose 5-2

functions 3-3

G
Globally Unique Identifier (GUID) A-8
Graphical User Interface (GUI) 2-2
GUI

build menu 2-4
component menu 2-4
file menu 2-2
help menu 2-6
project menu 2-3

GUID (Globally Unique Identifier) A-8

I
IDL Mapping A-12

M
matlabxl function 6-7
methods 1-6
missing parameter C-5
MWFlags class C-10
mwregsvr utility A-7
MWUtil class C-3
mxltool

purpose 2-2

Index-1

Index

N
New operator 3-6

P
project 1-6

creating 1-3
settings 2-7

project version 1-5

R
required arguments 5-8

S
self-registering component A-7
singleton MCR option 1-5
subroutines 3-3

T
troubleshooting

Excel Builder D-2
type library A-5

U
unregistering components A-7
utility library C-3

V
varargin/varargout 5-9
VARIANT variable B-2
version number 1-7 A-9
versioning 1-7
versioning rules A-10
Visual Basic Mapping A-13

Index-2

	toc
	Getting Started
	What Is MATLAB ® Builder for Excel ® ?
	How Does Excel Builder Work?

	Building a Deployable Application
	Creating a Project
	Elements of an Excel Builder Project
	Classes
	Versions

	Managing M-Files and MEX-Files
	Building a Project
	Command Line Interface
	Build Status

	Testing the Model
	Application Deployment
	Packaging and Distributing the Component

	Graphical User Interface
	Menus
	File Menu
	Project Menu
	Build Menu
	Component Menu
	Package Component
	Component Information

	Help Menu

	Project Settings Dialog Box
	Component Information Window
	Package Files Dialog Box
	Here is an illustration of the Package Files dialog box:

	Programming with MATLAB Builder for Excel
	Overview of Integration Process
	When to Use a Formula Function or a Subroutine
	Initializing MATLAB Builder for Excel Libraries with Excel
	Creating an Instance of a Class
	CreateObject Function
	New Operator

	Calling the Methods of a Class Instance
	Processing varargin and varargout Arguments
	Handling Errors During a Method Call
	Modifying Flags
	Array Formatting Flags
	Data Conversion Flags

	Usage Examples
	Magic Square Examples
	Creating the Project
	Building the Project
	Adding the Excel Builder COM Function to Excel
	Illustration 1. Output Magic Square Results to Excel
	Illustration 2. Transpose the Output
	Illustration 3. Resize the Output
	Inspecting the Visual Basic Code

	Multiple Files and Variable Arguments Example
	Creating the Project
	Building the Project
	Adding the Excel Builder COM Function to Excel
	Illustration 4: Calling myplot
	Illustration 5: Calling mysum Four Different Ways
	Illustration 6: myprimes Macro
	Inspecting the Visual Basic Code

	Spectral Analysis Example
	Building the Component
	Integrating the Component Using VBA
	Selecting the Libraries
	Creating the Visual Basic Form
	Adding the Spectral Analysis Menu Item to Excel

	Testing the Add-In
	Creating the Test Problem
	Creating the Data
	Running the Test
	Packaging and Distributing the Add-In

	Function Wizard
	Overview of the Function Wizard
	Installing the Function Wizard Add-In
	Starting the Function Wizard
	Understanding the Function Viewer
	Using the Function Viewer
	Loading and Executing Functions

	Component Browser
	Function Properties
	Editing Function Arguments
	Editing Required Arguments
	Editing Required Outputs
	Editing varargout Outputs

	Argument Properties
	Input Argument Properties Dialog Box
	Select the Range list to specify a range of current input argume
	Output Argument Properties Dialog Box

	Function Utilities
	Rename Function Dialog Box
	Copy Function Dialog Box
	Move Function Dialog Box

	Functions — Alphabetical List
	Producing a COM Object from MATLAB
	Overview of Internal Processes
	Code Generation
	Create Interface Definitions
	C++ Compilation
	Linking and Resource Binding
	Component Registration

	Component Registration
	Obtaining Registry Information
	Query the Register for Information About a Component
	Self-Registering Components
	Globally Unique Identifier (GUID)
	Versioning

	Calling Conventions
	Producing a COM Class
	IDL Mapping
	Visual Basic Mapping
	MATLAB Compiler Output

	Data Conversion
	Data Conversion Rules
	Array Formatting Flags
	Data Conversion Flags
	CoerceNumericToType
	InputDateFormat
	OutputAsDate As Boolean
	DateBias As Long

	Utility Library
	Referencing Utility Classes
	Utility Library Classes
	Class MWUtil
	Sub MWInitApplication(pApp As Object)
	Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])
	Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean
	Sub MWDate2VariantDate(pVar)

	Class MWFlags
	Property ArrayFormatFlags As MWArrayFormatFlags
	Property DataConversionFlags As MWDataConversionFlags
	Sub Clone(ppFlags As MWFlags)

	Class MWStruct
	Sub Initialize([varDims], [varFieldNames])
	Property Item([i0], [i1], ..., [i31]) As MWField
	Property NumberOfFields As Long
	Property NumberOfDims As Long
	Property Dims As Variant
	Property FieldNames As Variant
	Sub Clone(ppStruct As MWStruct)

	Class MWField
	Property Name As String
	Property Value As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppField As MWField)

	Class MWComplex
	Property Real As Variant
	Property Imag As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppComplex As MWComplex)

	Class MWSparse
	Property NumRows As Long
	Property NumColumns As Long
	Property RowIndex As Variant
	Property ColumnIndex As Variant
	Property Array As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppSparse As MWSparse)

	Class MWArg
	Property Value As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppArg As MWArg)

	Enumerations
	Enum mwArrayFormat
	Enum mwDataType
	Enum mwDateFormat

	Troubleshooting
	Examples
	Calling a MATLAB Function from Excel
	Using Multiple Files and Variable Arguments
	Creating a Comprehensive Excel Add-In: Spectral Analysis
	Querying the Registry

	Index

	tables
	Controls Needed for Spectral Analysis Example
	Registry Information Returned by componentinfo
	VARIANT Type Codes Supported
	MATLAB to COM VARIANT Conversion Rules
	COM VARIANT to MATLAB Conversion Rules
	Array Formatting Flags
	Array Formatting Rules for Input Arrays
	Array Formatting Rules for Output Arrays
	Conversion Rules for Input Dates
	mwArrayFormat Values
	mwDataType Values
	mwDateFormat Values
	Excel Builder Errors and Suggested Solutions
	Required Locations to Develop and Use Components
	Excel Errors and Suggested Solutions
	Function Wizard Problems

